Prefabrication by off-site manufacturing leads to a reduced overall construction schedule, improved quality, and reduced resource wastage. Modular building is therefore increasingly popular and promoted. With the recent promotion a number of relevant studies have been completed, however, a review of the design, construction, and performance of modular buildings under different loading conditions is lacking. This paper presents a state-of-the-art review of modular building structures. First, structural forms and construction materials are presented as a brief introduction to the modular structures. Modular building is shown to refer not to a single structure type, but a variety of structural systems and materials. These modular structures might perform differently to similar traditional structures and the structural performance is highly dependent on interand intra-module connections. The structural response of modules to different hazards is then considered, followed by the current design practice and methodology. As a currently developing area there is great potential for innovation in modular structures and several key research areas are identified for further work.
This paper investigates the seismic performance of bridges installed with a sliding-lead rubber bearing (LRB) isolation system subjected to near-fault earthquakes. A three-span continuous bridge isolated with sliding-LRB system is used as an example. Nonlinear time history analyses are conducted to investigate the sensitivity effects of isolation period, friction coefficient and sliding displacement limit on the bridge responses. The responses of the sliding-LRB system are compared with those of the conventional LRB system. The results show that the base forces of the piers can be reduced by employing proper friction coefficients. However, the residual displacement of the sliding-LRB system may be larger compared with that of the conventional LRB system. To overcome this disadvantage, an improved solution to reduce the residual displacement is proposed with its effectiveness investigated. It was also demonstrated that the residual displacement and peak displacement can be effectively reduced by employing the shape memory alloy devices in the sliding-LRB system without significantly increasing the base forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.