3D city models have become common geospatial data assets for cities that can be utilized in numerous fields, in tasks related to planning, visualization, and decision-making among others. We present a study of 3D city modeling focusing on the six largest cities in Finland. The study portrays a contradiction between the realized 3D city modeling projects and the expectations towards them: models do not appear to reach the broad applicability envisioned. In order to deal with contradiction and to support the development of future 3D city models, characteristics of different operational cultures in 3D city modeling are presented, and a concept for harmonizing the 3D city modeling is suggested.
The Internet has become a major dissemination and sharing platform for 3D content. The utilization of 3D measurement methods can drastically increase the production efficiency of 3D content in an increasing number of use cases where 3D documentation of real-life objects or environments is required. We demonstrated a developed, highly automated and integrated content creation process of providing reality-based photorealistic 3D models for the web. Close-range photogrammetry, terrestrial laser scanning (TLS) and their combination are compared using available state-of-the-art tools in a real-life project setting with real-life limitations. Integrating photogrammetry and TLS is a good compromise for both geometric and texture quality. Compared to approaches using only photogrammetry or TLS, it is slower and more resource-heavy but combines complementary advantages of each method, such as direct scale determination from TLS or superior image quality typically used in photogrammetry. The integration is not only beneficial, but clearly productionally possible using available state-of-the-art tools that have become increasingly available also for non-expert users. Despite the high degree of automation, some manual editing steps are still required in practice to achieve satisfactory results in terms of adequate visual quality. This is mainly due to the current limitations of WebGL technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.