Variation in floral characteristics and growth habits within the native range of the North American wildflower Ratibida columnifera (Nutt.) Wooton & Standl. suggest potential for breeding and selection efforts to develop improved cultivars for commercial and residential landscapes. Toward that end, experiments in vegetative propagation were performed to enable perpetuation of unique germplasm. Stem development stage, applications of auxin, genotypic variation, and the effects of bottom heat applications were assessed to determine impacts on rooting percentages and adventitious root system quality measures. Younger apical stem sections rooted more readily and produced better quality root systems than more lignified basal stem cuttings. Optimal rooting percentages and rooted cutting quality ranged from 0.10% to 0.30% IBA (indole-3-butyric acid) quick dips, with 0.30% being optimal for most genotypes. Application of 26 °C bottom heat improved rooting ability in both cool and warm seasons compared with ambient and bottom heat of 32 °C. Bottom heat of 32 °C improved most rooting measures over ambient during the cool season, but not during the warm season. The degree of improvement in adventitious rooting associated with various developmental stage, auxin quick dips, and bottom heating varied among accessions of R. columnifera, suggesting that adventitious rooting characteristics should be evaluated as a selection criterion for cultivar development within this species.
Variation in floral characteristics and growth habits within the native range of the North American wildflower Ratibida columnifera (Nutt.) Wooton & Standl. suggests potential for breeding and selection efforts to develop improved cultivars for commercial and residential landscapes. Experiments in seed propagation were performed to enable perpetuation of unique germplasms. Overnight hydration, storage condition variations, stratification and scarification, and seed maturation effects were assessed to determine impacts on viability and percent germination. Overnight hydration had no impact on percent germination. Germplasm had a significant effect on germination for all remaining experiments. Seed maintained viability at the same rate through 18 months, when slight reductions were noted. Cold storage at 3 °C had no effect on viability or percent germination of dry seed compared with storage at 23 °C. All three germplasms exhibited increased percent germination with some stratification period, and declined significantly in percent germination with all acid scarification treatments. Experiments indicated that most germplasms benefit from between 30 to 60 days of cold, moist stratification. There was a significant interaction effect among germplasms, location on the inflorescences, and maturity stages for R. columnifera. Data suggest that seed should be harvested as close as possible to when natural dispersal would occur for optimum germination. The degree of improvement in viability and percent germination associated with harvesting at various developmental stages, seed pretreatments, and storage conditions suggests that to achieve germination success, pretreatments should be used for propagation of seed from mature inflorescences and that variation can be expected within different genotypes of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.