Reductive cross-coupling allows the direct C-C bond formation between two organic halides without the need for preformation of an organometallic reagent. A method has been developed for the reductive cross-coupling of nonaromatic, heterocyclic bromides with aryl or heteroaryl bromides. The developed conditions use an air-stable Ni(II) source in the presence of a diamine ligand and a metal reductant to allow late-stage incorporation of saturated heterocyclic rings onto aryl halides in a functional-group tolerant manner.
A method has been developed for the introduction of nonaromatic heterocyclic structures onto aryl and heteroaryl bromides using alkyl tosylates in a reductive cross-coupling manifold. This protocol offers an improvement over previous methods by utilizing alkyl tosylate coupling partners that are bench-stable, crystalline solids that can be prepared from inexpensive, commercially available alcohols.
We investigate the role that order plays in the transfer of charges in the ZnO nano-particle-octylcyanobiphenyl (8CB) liquid crystal system, considered for photovoltaic applications. We have changed the concentration of ZnO nanoparticles in 8CB from 1.18 to 40 wt %. Our results show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles, up to a concentration of 30 wt %. In addition, the current generated by the system increases by three orders of magnitude.
Conditions have been developed for
the reductive cross-coupling
of 3-bromo-2,1-borazaronaphthalenes with primary and secondary alkyl
iodides. This method allows direct alkylation of azaborine cores,
providing efficient access to functionalized isosteres of naphthalene
derivatives.
A method has been developed for the Pd-catalyzed synthesis of α-(hetero)aryl esters and amides through a Suzuki–Miyaura cross-coupling reaction. This method avoids the use of strong base, does not necessitate inert or low temperature formation of reagents, and does not require the use of a large excess of organometallic reagent. Utilization of organotrifluoroborate salts as nucleophilic partners allows a variety of functional groups and heterocyclic compounds to be tolerated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.