A major contaminant of concern for mountaintop removal/valley fill (MTR/VF) coal mining is selenium (Se), an essential micronutrient that can be toxic to fish. Creek chubs (Semotilus atromaculatus), green sunfish (Lepomis cyanellus), and composite insect samples were collected in March-July, 2011-2013 at two sites within the Mud River, West Virginia. One site (MR7) receives MTR/VF coal mining effluent, while the reference site (LFMR) does not. MR7 water had significantly higher concentrations of soluble Se (p < 0.01) and conductivity (p < 0.005) compared to LFMR. MR7 whole insects contained significantly higher concentrations of Se compared to LFMR insects (p < 0.001). MR7 creek chubs had significantly higher Se in fillets, liver, and ovary tissues compared to LFMR samples (p < 0.0001, p < 0.0001, and p < 0.02, respectively). MR7 green sunfish fillets contained significantly higher Se (p < 0.0001). Histological examination showed LFMR creek chub gills contained a typical amount of parasitic infestations; however MR7 gills contained minimal to no visible parasites. X-ray absorption spectroscopic analyses revealed that MR7 whole insects and creek chub tissues primarily contained organic Se and selenite. These two species of Mud River fish were shown to specifically accumulate Se differently in tissues compartments. Tissue-specific concentrations of Se may be useful in determining potential reproductive consequences of Se exposure in wild fish populations.
Bioaccumulation of methylmercury in the aquatic food web is governed in part by the methylation of inorganic divalent mercury (Hg(II)) by anaerobic microorganisms. In sulfidic settings, a small fraction of total Hg(II) is typically bioavailable to methylating microorganisms. Quantification of this fraction is difficult due to uncertainties in the speciation of Hg(II) and the mechanisms of uptake by methylating microbes. However, recent studies have shown that the bioavailable fraction is likely to include a portion of Hg(II) associated with solid phases, that is, nanostructured mercuric sulfides. Moreover, addition of thiols to suspensions of methylating cultures coincides with increased uptake into cells and methylmercury production. Here, we present a thiol-based selective extraction assay to provide information on the bioavailable Hg fraction in sediments. In the procedure, sediment samples were exposed to a nitrogen-purged solution of glutathione (GSH) for 30 min and the amount of GSH-leachable mercury was quantified. In nine sediment samples from a marine location, the relative GSH-leachable mercury concentration was strongly correlated to the relative amount of methylmercury in the sediments (=0.91, <0.0001) across an order of magnitude of methylmercury concentration values. The approach was further applied to anaerobic sediment slurry microcosm experiments in which sediments were cultured under the same microbial growth conditions but were amended with multiple forms of Hg with a known spectrum of bioavailability. GSH-leachable Hg concentrations increased with observed methylmercury concentrations in the microcosms, matching the trend of species bioavailability in our previous work. Results suggest that a thiol-based selective leaching approach is an improvement compared with other proposed methods to assess Hg bioavailability in sediment and that this approach could provide a basis for comparison of sites where Hg methylation is a concern.
Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHg using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.