The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA ( CHROME ), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.
Purpose of review Noncoding RNAs have emerged as important regulators of cellular and systemic lipid metabolism. In particular, the enigmatic class of long noncoding RNAs have been shown to play multifaceted roles in controlling transcriptional and posttranscriptional gene regulation. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in the regulation of lipid metabolism during health and disease. Recent findings Despite comprising the majority of the transcriptionally active regions of the human genome, lncRNA functions remain poorly understood, with fewer than 1% of human lncRNAs functionally characterized. Broadly defined as nonprotein coding transcripts greater than 200 nucleotides in length, lncRNAs execute their functions by forming RNA–DNA, RNA–protein, and RNA–RNA interactions that regulate gene expression through diverse mechanisms, including epigenetic remodeling of chromatin, transcriptional activation or repression, posttranscriptional regulation of mRNA, and modulation of protein activity. It is now recognized that in lipid metabolism, just as in other areas of biology, lncRNAs operate to regulate the expression of individual genes and gene networks at multiple different levels. Summary The complexity revealed by recent studies showing how lncRNAs can alter systemic and cell-type-specific cholesterol and triglyceride metabolism make it clear that we have entered a new frontier for discovery that is both daunting and exciting.
Non-coding RNAs, once considered "genomic junk", are now known to play central roles in the dynamic control of transcriptional and post-transcriptional gene expression. Long non-coding RNAs (lncRNAs) are an expansive class of transcripts broadly described as greater than 200 nucleotides in length. While most lncRNAs are species-specific, their lack of conservation does not imbue a lack of function. LncRNAs have been found to regulate numerous diverse biological functions, including those central to macrophage differentiation and activation. Through their ability to form RNA-DNA, RNA-protein and RNA-RNA interactions, lncRNAs have been implicated in the regulation of myeloid lineage determination, and innate and adaptive immune functions, among others. In this review, we discuss recent advances, current challenges and future opportunities in understanding the roles of lncRNAs in macrophage functions in homeostasis and disease.
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.
Long non-coding RNAs (lncRNAs), once considered ‘genomic junk’, have been found to regulate diverse biological processes and their study continues to reveal novel insights into lncRNA functions. Recent studies revealed that some lncRNAs may harbor small open reading frames (ORFs) that code for functional micropeptides. While investigating an unannotated primate-specific lncRNA, lncVLDLR, that is altered in patients with type II diabetes and cardiovascular disease, we discovered a previously unrecognized ORF encoding a 44 amino acid micropeptide. In vitro transcription and translation of the IMP coding sequence in the presence of 35 S-methionine produced a single 8 kDa peptide, which we have named Inflammation-modulating MicroPeptide (IMP). To dissect IMP function, we focused on its amino acid sequence and putative structure. These analyses revealed high sequence homology between IMP and transcription factors such as NFκB, c-myb and zinc finger proteins, and the presence of a hydrophobic region with an LxxLL motif often found in transcriptional regulators. Circular dichroism spectroscopy of synthesized IMP predicted an intrinsically disordered peptide, which is a common characteristic of transcriptional coactivators. To investigate a potential role of IMP in regulating gene transcription, we cloned a MYC-epitope tag in-frame with IMP within the full-length transcript of lncVLDLR and expressed it in HEK293 cells. Immunofluorescence staining, and cell fractionation combined with western blotting, confirmed nuclear localization of IMP. RNA-seq analysis of THP1 macrophages overexpressing IMP revealed an increase in inflammatory genes, including cytokines and chemokines. Moreover, analysis of upstream regulators of these genes suggests that IMP may interact with KIX domain-containing transcriptional coactivators to regulate inflammatory gene expression. Together our data identify a novel human micropeptide, encoded within a putative lncRNA that is dysregulated in diabetes and cardiovascular disease, that regulates inflammatory gene transcription. Further characterization of IMP and its regulatory network may uncover novel opportunities for therapeutic intervention in cardiovascular and other inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.