All-inorganic perovskites such as cesium lead bromide (CsPbBr 3 ) can show much better stability than organic-inorganic hybrid perovskite materials in ambient air. However, fabricating a high-quality CsPbBr 3 perovskite film normally requires a high annealing temperature, leading to the difficulty of preparing CsPbBr 3 solar cells with low-temperature solution process. In this work, we demonstrated a pyridine-vapor treatment in two-step fabrication of CsPbBr 3 perovskite films that can reduce the annealing temperature to about 160 C. The mechanism is attributed to the reaction of pyridine with lead bromide, which forms an intermediate phase and leads to a low activation energy in the formation of CsPbBr 3 perovskite films during thermal annealing. The devices without encapsulation show excellent stability in ambient air with the humidity up to 70%. This work provides a novel approach for preparing inorganic perovskite solar cells at low temperature.
Herein, we use experiments and numerical simulations to demonstrate a novel class of magnetically responsive photonic crystals (MRPCs) based on photonic nanorods which exhibit multiple optical properties in a magnetic field (H) due to their fixed photonic nanorods and H-tunable lattice defects. As an example, superparamagnetic FeO@polyvinyl pyrrolidone (PVP)@SiO photonic nanorods were fabricated through a polyacrylic acid-catalysed hydrolysis-condensation reaction of γ-mercaptopropyltrimethoxysilane around chain-like PC templates formed by monodispersed FeO@PVP particles under H. For the as-proposed MRPCs, with increasing H, the photonic nanorods firstly experience in situ rotational orientation along the H direction, followed by alignment and connection into long parellel nanochains via the spaces between the ends of adjacent photonic nanorods (named lattice defects). As the number and size of the lattice defects changes with H, the MRPCs exhibit visible red-shifts and blue-shifts of their diffraction wavelengths in addition to monotonous enhancement of their diffraction peaks. These optical properties are very different from those of previously reported MRPCs. The diversity of the structural colors and brightness of these MRPCs with H is also closely dependent on the applied time of H, the concentration of the photonic nanorods, and the structural parameters of the nanorods, including nanorod length and interparticle distance. Due to the difficult duplication of their various optical properties as well as their easy fabrication and low cost, MRPCs based on photonic nanorods are suitable for wide applications in forgery protection and information encryption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.