BackgroundThe gut microbiota evolves from birth and is in early life influenced by events such as birth mode, type of infant feeding, and maternal and infant antibiotics use. However, we still have a gap in our understanding of gut microbiota development in older children, and to what extent early events and pre-school lifestyle modulate the composition of the gut microbiota, and how this impinges on whole body metabolic regulation in school-age children.ResultsTaking advantage of the KOALA Birth Cohort Study, a long-term prospective birth cohort in the Netherlands with extensive collection of high-quality host metadata, we applied shotgun metagenomics sequencing and systematically investigated the gut microbiota of children at 6–9 years of age. We demonstrated an overall adult-like gut microbiota in the 281 Dutch school-age children and identified 3 enterotypes dominated by the genera Bacteroides, Prevotella, and Bifidobacterium, respectively. Importantly, we found that breastfeeding duration in early life and pre-school dietary lifestyle correlated with the composition and functional competences of the gut microbiota in the children at school age. The correlations between pre-school dietary lifestyle and metabolic phenotypes exhibited a striking enterotype dependency. Thus, an inverse correlation between high dietary fiber consumption and low plasma insulin levels was only observed in individuals with the Bacteroides and Prevotella enterotypes, but not in Bifidobacterium enterotype individuals in whom the gut microbiota displayed overall lower microbial gene richness, alpha-diversity, functional potential for complex carbohydrate fermentation, and butyrate and succinate production. High total fat consumption and elevated plasma free fatty acid levels in the Bifidobacterium enterotype are associated with the co-occurrence of Streptococcus.ConclusionsOur work highlights the persistent effects of breastfeeding duration and pre-school dietary lifestyle in affecting the gut microbiota in school-age children and reveals distinct compositional and functional potential in children according to enterotypes. The findings underscore enterotype-specific links between the host metabolic phenotypes and dietary patterns, emphasizing the importance of microbiome-based stratification when investigating metabolic responses to diets. Future diet intervention studies are clearly warranted to examine gut microbe-diet-host relationships to promote knowledge-based recommendations in relation to improving metabolic health in children.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0608-z) contains supplementary material, which is available to authorized users.
The dietary pattern can influence the immune system directly, but may also modulate it indirectly by regulating the gut microbiota. Here, we investigated the effect of a 3-months lacto-ovo-vegetarian diet on the diversity of gut microbiota and the immune system in healthy omnivorous volunteers, using high-throughput sequencing technologies. The short-term vegetarian diet did not have any major effect on the diversity of the immune system and the overall composition of the metagenome. The prevalence of bacterial genera/species with known beneficial effects on the intestine, including butyrate-producers and probiotic species and the balance of autoimmune-related variable genes/families were, however, altered in the short-term vegetarians. A number of bacterial species that are associated with the expression level of IgA, a key immunoglobulin class that protects the gastrointestinal mucosal system, were also identified. Furthermore, a lower diversity of T-cell repertoire and expression level of IgE, as well as a reduced abundance of inflammation-related genes in the gut microbiota were potentially associated with a control group with long-term vegetarians. Thus, the composition and duration of the diet may have an impact on the balance of pro-/anti-inflammatory factors in the gut microbiota and immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.