BackgroundExtracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-α promotes glutaminase expression in neurons. However, the expression and the functionality of glutaminase in astrocytes during neuroinflammation remain unknown. We posit that TNF-α can promote the release of EVs in astrocytes through upregulation of glutaminase expression.ResultsRelease of EVs, which was demonstrated by electron microscopy, nanoparticle tracking analysis (NTA), and Western Blot, increased in mouse astrocytes when treated with TNF-α. Furthermore, TNF-α treatment significantly upregulated protein levels of glutaminase and increased the production of glutamate, suggesting that glutaminase activity is increased after TNF-α treatment. Interestingly, pretreatment with a glutaminase inhibitor blocked TNF-α-mediated generation of reactive oxygen species in astrocytes, which indicates that glutaminase activity contributes to stress in astrocytes during neuroinflammation. TNF-α-mediated increased release of EVs can be blocked by either the glutaminase inhibitor, antioxidant N-acetyl-l-cysteine, or genetic knockout of glutaminase, suggesting that glutaminase plays an important role in astrocyte EV release during neuroinflammation.ConclusionsThese findings suggest that glutaminase is an important metabolic factor controlling EV release from astrocytes during neuroinflammation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-017-0853-2) contains supplementary material, which is available to authorized users.
Neural stem/progenitor cells (NPCs) are known to have potent therapeutic effects in neurological disorders through the secretion of extracellular vesicles (EVs). Despite the therapeutic potentials, the numbers of NPCs are limited in the brain, curbing the further use of EVs in the disease treatment. To overcome the limitation of NPC numbers, we used a three transcription factor (Brn2, Sox2, and Foxg1) somatic reprogramming approach to generate induced NPCs (iNPCs) from mouse fibroblasts and astrocytes. The resulting iNPCs released significantly higher numbers of EVs compared with wild-type NPCs (WT-NPCs). Furthermore, iNPCs-derived EVs (iNPC-EVs) promoted NPC function by increasing the proliferative potentials of WT-NPCs. Characterizations of EV contents through proteomics analysis revealed that iNPC-EVs contained higher levels of growth factor-associated proteins that were predicted to activate the downstream extracellular signal-regulated kinase (ERK) pathways. As expected, the proliferative effects of iNPC-derived EVs on WT-NPCs can be blocked by an ERK pathway inhibitor. Our data suggest potent therapeutic effects of iNPC-derived EVs through the promotion of NPC proliferation, release of growth factors, and activation of ERK pathways. These studies will help develop highly efficient cell-free therapeutic strategies for the treatment of neurological diseases.
Tumor cells metastasizing through the bloodstream or lymphatic systems must withstand acute shear stress (ASS). Autophagy is a cell survival mechanism that functions in response to stressful conditions, but also contributes to cell death or apoptosis. We predicted that a compensation pathway to autophagy exists in tumor cells subjected to mechanical stress. We found that ASS promoted autophagosome (AP) accumulation and induced release of extracellular nanovesicles (EVs) containing autophagy components. Furthermore, we found that ASS promoted autophagic vesicles fused with multivesicular body (MVB) to form an AP-MVB compartment and then induced autophagy component release into the extracellular space via EVs through the autophagy-MVB-exosome pathway. More importantly, either increasing intracellular autophagosome accumulation or inhibiting autophagic degradation promoted AP-MVB accumulation but did not induce autophagy-associated protein release via EVs except under ASS, demonstrating the existence of a mechanical stress-dependent compensation pathway. Together, these findings revealed that EVs provide an additional protection mechanism for tumor cells and counteract autophagy to maintain cellular homeostasis under acute shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.