Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, i.e. 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (val: 62.6, test: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (val: 66.3, test: 66.5).
We consider the problem of volumetric (3D) unsupervised domain adaptation (UDA) in cross-modality medical image segmentation, aiming to perform segmentation on the unannotated target domain (e.g. MRI) with the help of labeled source domain (e.g. CT). Previous UDA methods in medical image analysis usually suffer from two challenges: 1) they focus on processing and analyzing data at 2D level only, thus missing semantic information from the depth level; 2) one-to-one mapping is adopted during the style-transfer process, leading to insufficient alignment in the target domain. Different from the existing methods, in our work, we conduct a first of its kind investigation on multi-style image translation for complete image alignment to alleviate the domain shift problem, and also introduce 3D segmentation in domain adaptation tasks to maintain semantic consistency at the depth level. In particular, we develop an unsupervised domain adaptation framework incorporating a novel quartet self-attention module to efficiently enhance relationships between widely separated features in spatial regions on a higher dimension, leading to a substantial improvement in segmentation accuracy in the unlabeled target domain. In two challenging crossmodality tasks, specifically brain structures and multiorgan abdominal segmentation, our model is shown to outperform current state-of-the-art methods by a significant margin, demonstrating its potential as a benchmark resource for the biomedical and health informatics research community. 1
Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, i.e. 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (val: 62.6, test: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (val: 66.3, test: 66.5).
Automatic nuclei segmentation and classification plays a vital role in digital pathology. However, previous works are mostly built on data with limited diversity and small sizes, making the results questionable or misleading in actual downstream tasks. In this paper, we aim to build a reliable and robust method capable of dealing with data from the 'the clinical wild'. Specifically, we study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin (H&E) stained histopathology data, and evaluate our approach using the recent largest dataset: PanNuke. We address the detection and classification of each nuclei as a novel semantic keypoint estimation problem to determine the center point of each nuclei. Next, the corresponding class-agnostic masks for nuclei center points are obtained using dynamic instance segmentation. By decoupling two simultaneous challenging tasks, our method can benefit from class-aware detection and class-agnostic segmentation, thus leading to a significant performance boost. We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types, delivering new benchmark results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.