Long-range dependencies can capture useful contextual information to benefit visual understanding problems. In this work, we propose a Criss-Cross Network (CCNet) for obtaining such important information through a more effective and efficient way. Concretely, for each pixel, our CC-Net can harvest the contextual information of its surrounding pixels on the criss-cross path through a novel crisscross attention module. By taking a further recurrent operation, each pixel can finally capture the long-range dependencies from all pixels. Overall, our CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the nonlocal block in computing long-range dependencies. 3) The state-of-the-art performance. We conduct extensive experiments on popular semantic segmentation benchmarks including Cityscapes, ADE20K, and instance segmentation benchmark COCO. In particular, our CCNet achieves the mIoU score of 81.4 and 45.22 on Cityscapes test set and ADE20K validation set, respectively, which are the new state-of-the-art results. We make the code publicly available at https://github.com/speedinghzl/CCNet.
We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discriminative regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Starting with a single small object region, our proposed approach drives the classification network to sequentially discover new and complement object regions by erasing the current mined regions in an adversarial manner. These localized regions eventually constitute a dense and complete object region for learning semantic segmentation. To further enhance the quality of the discovered regions by adversarial erasing, an online prohibitive segmentation learning approach is developed to collaborate with adversarial erasing by providing auxiliary segmentation supervision modulated by the more reliable classification scores. Despite its apparent simplicity, the proposed approach achieves 55.0% and 55.7% mean Intersection-over-Union (mIoU) scores on PASCAL VOC 2012 val and test sets, which are the new state-of-the-arts.
In this work, we propose Adversarial Complementary Learning (ACoL) to automatically localize integral objects of semantic interest with weak supervision. We first mathematically prove that class localization maps can be obtained by directly selecting the class-specific feature maps of the last convolutional layer, which paves a simple way to identify object regions. We then present a simple network architecture including two parallel-classifiers for object localization. Specifically, we leverage one classification branch to dynamically localize some discriminative object regions during the forward pass. Although it is usually responsive to sparse parts of the target objects, this classifier can drive the counterpart classifier to discover new and complementary object regions by erasing its discovered regions from the feature maps. With such an adversarial learning, the two parallel-classifiers are forced to leverage complementary object regions for classification and can finally generate integral object localization together. The merits of ACoL are mainly two-fold: 1) it can be trained in an end-to-end manner; 2) dynamically erasing enables the counterpart classifier to discover complementary object regions more effectively. We demonstrate the superiority of our ACoL approach in a variety of experiments. In particular, the Top-1 localization error rate on the ILSVRC dataset is 45.14%, which is the new state-of-the-art.
Despite the remarkable progress, weakly supervised segmentation approaches are still inferior to their fully supervised counterparts. We obverse the performance gap mainly comes from their limitation on learning to produce highquality dense object localization maps from image-level supervision. To mitigate such a gap, we revisit the dilated convolution [1] and reveal how it can be utilized in a novel way to effectively overcome this critical limitation of weakly supervised segmentation approaches. Specifically, we find that varying dilation rates can effectively enlarge the receptive fields of convolutional kernels and more importantly transfer the surrounding discriminative information to nondiscriminative object regions, promoting the emergence of these regions in the object localization maps. Then, we design a generic classification network equipped with convolutional blocks of different dilated rates. It can produce dense and reliable object localization maps and effectively benefit both weakly-and semi-supervised semantic segmentation. Despite the apparent simplicity, our proposed approach obtains superior performance over state-of-the-arts. In particular, it achieves 60.8% and 67.6% mIoU scores on Pascal VOC 2012 test set in weakly-(only image-level labels are available) and semi-(1,464 segmentation masks are available) supervised settings, which are the new stateof-the-arts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.