Long-range dependencies can capture useful contextual information to benefit visual understanding problems. In this work, we propose a Criss-Cross Network (CCNet) for obtaining such important information through a more effective and efficient way. Concretely, for each pixel, our CC-Net can harvest the contextual information of its surrounding pixels on the criss-cross path through a novel crisscross attention module. By taking a further recurrent operation, each pixel can finally capture the long-range dependencies from all pixels. Overall, our CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the nonlocal block in computing long-range dependencies. 3) The state-of-the-art performance. We conduct extensive experiments on popular semantic segmentation benchmarks including Cityscapes, ADE20K, and instance segmentation benchmark COCO. In particular, our CCNet achieves the mIoU score of 81.4 and 45.22 on Cityscapes test set and ADE20K validation set, respectively, which are the new state-of-the-art results. We make the code publicly available at https://github.com/speedinghzl/CCNet.
Human parsing has received considerable interest due to its wide application potentials. Nevertheless, it is still unclear how to develop an accurate human parsing system in an efficient and elegant way. In this paper, we identify several useful properties, including feature resolution, global context information and edge details, and perform rigorous analyses to reveal how to leverage them to benefit the human parsing task. The advantages of these useful properties finally result in a simple yet effective Context Embedding with Edge Perceiving (CE2P) framework for single human parsing. Our CE2P is end-to-end trainable and can be easily adopted for conducting multiple human parsing. Benefiting the superiority of CE2P, we won the 1st places on all three human parsing tracks in the 2nd Look into Person (LIP) Challenge. Without any bells and whistles, we achieved 56.50% (mIoU), 45.31% (mean AP r ) and 33.34% (AP p 0.5 ) in Track 1, Track 2 and Track 5, which outperform the state-of-the-arts more than 2.06%, 3.81% and 1.87%, respectively. We hope our CE2P will serve as a solid baseline and help ease future research in single/multiple human parsing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.