We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.
Reliable detection of genetically modi ed (GM) maize is signi cant for food authenticity, labelling, quality, and safety assessment.is study aims to evaluate the factors in uencing degradation and polymerase chain reaction (PCR) ampli cation of DNA from the wild type and transgenic maize (events Bt-176 and MON810) during thermal treatment at 100°C and 121°C. A new PCR method was developed targeting the Cry1Ab gene to detect insect-resistant GM plants. e yield of genomic DNAs extracted by the DNeasy plant mini kit dramatically decreased while DNAs obtained by cetyltrimethyl ammonium bromide-(CTAB-) based method did not show any visible changes in the yield by the time of processing. Treatment at 100°C did not signi cantly a ect either genomic DNAs or amplicons. Heating at 121°C induced time-dependent degradation of genomic DNAs and exogenous Cry1Ab gene; however, it did not have any considerable in uence on the exogenous 141 bp amplicons or endogenous amplicons in the range of 102 bp to 226 bp with the exception of the event MON810 extracted by the DNeasy plant mini kit. More yield was observed at 226 bp than 140 bp fragment of the invertase gene. e 141 bp fragment of the transgenic CaMV 35S promoter exhibited the highest thermal stability of all the examined amplicons. Analysis of foodstu s demonstrated 102 bp amplicons speci c for the zein gene as the e ective marker to detect maize in the processed foods. e obtained results demonstrate that PCR-based detection of the wild type and transgenic maize is dependent on the combination of di erent parameters of crucial factors such as temperature and duration of exposure, transgenic event, DNA extraction method, DNA marker, and size and location of amplicons.
Allergenicity assessment of transgenic plants and foods is important for food safety, labeling regulations, and health protection. The aim of this study was to develop an effective multi-allergen diagnostic approach for transgenic soybean assessment. For this purpose, multiplex polymerase chain reaction (PCR) coupled with DNA chip technology was employed. The study was focused on the herbicide-resistant Roundup Ready soya (RRS) using a set of certified reference materials consisting of 0, 0.1%, 0.5%, and 10% RRS. Technically, the procedure included design of PCR primers and probes; genomic DNA extraction; development of uniplex and multiplex PCR systems; DNA analysis by agarose gel electrophoresis; microarray development, hybridization, and scanning. The use of the asymmetric multiplex PCR method is shown to be very efficient for DNA hybridization with biochip probes. We demonstrate that newly developed fourplex PCR methods coupled with DNA-biochips enable simultaneous identification of three major endogenous allergens, namely, Gly m Bd 28K, Gly m Bd 30K, and lectin, as well as exogenous 5-enolppyruvyl shikimate-phosphate synthase (epsps) expressed in herbicide-resistant roundup ready GMOs. The approach developed in this study can be used for accurate, cheap, and fast testing of food allergens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.