Artificial synaptic devices are the essential hardware component in emerging neuromorphic computing systems by mimicking biological synapse and brain functions. When made from natural organic materials such as protein and carbohydrate, they have potential to improve sustainability and reduce electronic waste by enabling environmentally‐friendly disposal. In this paper, a new natural organic memristor based artificial synaptic device is reported with the memristive film processed by a honey and carbon nanotube (CNT) admixture, that is, honey‐CNT memristor. Optical microscopy, scanning electron microscopy, and micro‐Raman spectroscopy are employed to analyze the morphology and chemical structure of the honey‐CNT film. The device demonstrates analog memristive potentiation and depression, with the mechanism governing these functions explained by the formation and dissolution of conductive paths due to the electrochemical metal filaments which are assisted by CNT clusters and bundles in the honey‐CNT film. The honey‐CNT memristor successfully emulates synaptic functionalities such as short‐term plasticity and its transition to long‐term plasticity for memory rehearsal, spatial summation, and shunting inhibition, and for the first time, the classical conditioning behavior for associative learning by mimicking the Pavlov's dog experiment. All these results testify that honey‐CNT memristor based artificial synaptic device is promising for energy‐efficient and eco‐friendly neuromorphic systems.
Graphene Oxide (GO) has been used with surfactants 1 to create conformal coatings or with polymers to create diffusion barriers 3 , and CVD graphene (G) films have shown anti-corrosive properties 2 after a difficult transfer process. The study of exfoliated graphene flakes (EGFs) and water to create a film has not been reported. EGFs have advantages with an intact crystal lattice, However, using EGFs to create a conformal graphene thin film coating, by self-assembling without surfactant has not been studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.