Intracranial pressure (ICP) is an important and established clinical measurement that is used in the management of severe acute brain injury. ICP waveforms are usually triphasic and are susceptible to artifact because of transient catheter malfunction or routine patient care. Existing methods for artifact detection include threshold-based, stability-based, or template matching, and result in higher false positives (when there is variability in the ICP waveforms) or higher false negatives (when the ICP waveforms lack complete triphasic components but are valid). We hypothesized that artifact labeling of ICP waveforms can be optimized by an active learning approach which includes interactive querying of domain experts to identify a manageable number of informative training examples. The resulting active learning based framework identified non-artifactual ICP pulses with a superior AUC of 0.96 ± 0.012, compared to existing methods: template matching (AUC: 0.71 ± 0.04), ICP stability (AUC: 0.51 ± 0.036) and threshold-based (AUC: 0.5 ± 0.02).
Background and Aims: To examine whether Heart Rate Variability (HRV) measures can be used to detect Neurocardiogenic Injury (NCI).Methods: 326 consecutive admissions with aneurysmal subarachnoid hemorrhage (SAH) met criteria for the study. 56 of 326 subjects (17.2%) developed NCI which we defined by wall motion abnormality with ventricular dysfunction on transthoracic echocardiogram or cardiac troponin-I > 0.3 ng/mL without ECG evidence of coronary artery insufficiency. HRV measures (in time and frequency domains, as well as nonlinear technique of detrended fluctuation analysis) were calculated over the first 48 hours. We applied longitudinal multilevel linear regression to characterize the relationship of HRV measures with NCI and examine between group differences at baseline and over time.Results: There was decreased vagal activity in NCI subjects with a between group difference in Low/High Frequency Ratio (beta 3.42, SE 0.92, p=0.0002), with sympathovagal balance in favor of sympathetic nervous activity. All time-domain measures were decreased in SAH subjects with NCI. An ensemble machine learning approach translated these measures into a classification tool that demonstrated good discrimination using the area under the receiver operating characteristic
Background and Purpose: Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage negatively impacts long-term recovery but is often detected too late to prevent damage. We aim to develop hourly risk scores using routinely collected clinical data to detect DCI. Methods: A DCI classification model was trained using vital sign measurements (heart rate, blood pressure, respiratory rate, and oxygen saturation) and demographics routinely collected for clinical care. Twenty-two time-varying physiological measures were computed including mean, SD, and cross-correlation of heart rate time series with each of the other vitals. Classification was achieved using an ensemble approach with L2-regularized logistic regression, random forest, and support vector machines models. Classifier performance was determined by area under the receiver operating characteristic curves and confusion matrices. Hourly DCI risk scores were generated as the posterior probability at time t using the Ensemble classifier on cohorts recruited at 2 external institutions (n=38 and 40). Results: Three hundred ten patients were included in the training model (median, 54 years old [interquartile range, 45–65]; 80.2% women, 28.4% Hunt and Hess scale 4–5, 38.7% Modified Fisher Scale 3–4); 101 (33%) developed DCI with a median onset day 6 (interquartile range, 5–8). Classification accuracy before DCI onset was 0.83 (interquartile range, 0.76–0.83) area under the receiver operating characteristic curve. Risk scores applied to external institution datasets correctly predicted 64% and 91% of DCI events as early as 12 hours before clinical detection, with 2.7 and 1.6 true alerts for every false alert. Conclusions: An hourly risk score for DCI derived from routine vital signs may have the potential to alert clinicians to DCI, which could reduce neurological injury.
To develop and validate a prediction model for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) using a temporal unsupervised feature engineering approach, demonstrating improved precision over standard features. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Baseline information and standard grading scales were evaluated: age, sex, Hunt Hess grade, modified Fisher Scale (mFS), and Glasgow Coma Scale (GCS). An unsupervised approach applying random kernels was used to extract features from physiological time series (systolic and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (Partial Least Squares, linear and kernel Support Vector Machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.58. Combined demographics and grading scales: AUC 0.60. Random kernel derived physiologic features: AUC 0.74. Combined baseline and physiologic features with redundant feature reduction: AUC 0.77. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that our models achieve higher classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.