The balance between the capillary pressure provided by the wick in a heat pipe or vapor chamber and the flow resistance to liquid resupply at the evaporator determines the maximum heat load that can be sustained at steady state. This maximum heat load is termed as the capillary limit; operation at steady heat loads above the capillary limit will result in dryout at the evaporator wick. However, different user needs and device workloads can lead to highly transient heat loads in applications ranging from consumer electronic devices to server processors. In these instances, the operation of heat pipes must be assessed in response to brief transient heat loads which could be higher than the notional capillary limit that governs dryout at steady state. In the current study, experiments are performed to characterize the transient thermal response of a heat pipe subjected to heat input pulses of varying duration that exceed the capillary limit. Transient dryout events due to a wick pressure drop exceeding the maximum available capillary pressure can be detected from an analysis of the measured temperature signatures. It is demonstrated that under such transient heating conditions, a heat pipe can sustain heat loads higher than the steady-state capillary limit for brief periods of time without experiencing dryout. If the heating pulse is sufficiently long as to induce transient dryout, the heat pipe may experience an elevated steady-state temperature even after the heat load is reduced back to a level lower than the capillary limit. The steady-state heat load must then be reduced to a level much below the capillary limit to fully recover the original thermal resistance of the heat pipe. This characteristic temperature hysteresis following transient dryout has significant implications for the use of heat pipes for pulsed power dissipation. Further experiments are performed to bound the range of heat loads over which the temperature hysteresis is present following a transient dryout event.
The thermal resistance of a vapor chamber is primarily governed by conduction across the evaporator wick and the saturation temperature gradient in the vapor core. The relative contributions of these two predominant resistances can vary dramatically with vapor chamber operating conditions and geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.