The ruminal kinetics of protein sources may be changed by heat and sugar treatments. Thus, these processing methods may be used as alternatives to increase beef-cattle diets’ rumen undegradable protein (RUP). We aimed to evaluate the effects of processing cottonseed meals with autoclave, conventional, and microwave ovens, with and without using xylose, on the ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted, and each sample was incubated in the rumen to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were also conducted to evaluate ID. The control treatment had a greater soluble fraction for DM and CP than processed cottonseed meals (p < 0.05). The addition of xylose decreased both DM and CP water-soluble fractions (fraction A) of cottonseed meal heated in a conventional oven (p < 0.05). Compared to the control, we observed a decrease in effective degradability and increased RUP for all processed methods (p < 0.05). Furthermore, conventional and microwave ovens showed greater ID than the control. Moreover, xylose-treated groups heated in the autoclave and conventional ovens had greater ID than xylose-untreated cottonseed meal. Under these experimental conditions, cottonseed RUP was increased by the evaluated processing methods.
Peanut meal has an excellent total protein content but also has low rumen undegradable protein (RUP). High-performance ruminants have high RUP requirements. We aimed to evaluate the effects of processing peanut meal with an autoclave and conventional and microwave ovens, with and without using xylose on its ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were conducted to evaluate intestinal digestibility (ID). The control treatment had a greater fraction A for DM and CP than peanut meals processed with an autoclave or conventional oven. The control had greater kd for CP compared with the microwave. The addition of xylose decreased fraction A, the degradation rate of fraction B (kd) and RUP, and increased the protein B fraction of autoclaved peanut meal. We observed a decrease in effective degradability (ED) and increased RUP for processed treatments in all experiments compared with the control. Processing methods did not affect the protein ID of autoclaved peanut meal compared to the control. An interaction between xylose and heating time was observed, where increasing heating time linearly reduced the ID of xylose-untreated treatments. Overall, these results suggest that the tested methods effectively increased the RUP content of peanut meal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.