Asymmetric dark matter models are based on the hypothesis that the present-day abundance of dark matter has the same origin as the abundance of ordinary or "visible" matter: an asymmetry in the number densities of particles and antiparticles. They are largely motivated by the observed similarity in the mass densities of dark and visible matter, with the former observed to be about five times the latter. This review discusses the construction of asymmetric dark matter models, summarizes cosmological and astrophysical implications and bounds, and touches on direct detection prospects and collider signatures.
Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed velocities of pulsars, and can play an important role in the formation of the first stars. We describe the production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and, therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the upcoming experiments at the Large Hadron Collider and a Linear Collider.PACS numbers: 14.60. St, 95.35.+d
We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV. We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter.ArXiv ePrint: 1407.7874
If dark matter couples directly to a light force mediator, then it may form
bound states in the early universe and in the non-relativistic environment of
haloes today. In this work, we establish a field-theoretic framework for the
computation of bound-state formation cross-sections, de-excitation and decay
rates, in theories with long-range interactions. Using this formalism, we carry
out specific computations for scalar particles interacting either via a light
scalar or vector mediator. At low relative velocities of the interacting
particles, the formation of bound states is enhanced by the Sommerfeld effect.
For particle-antiparticle pairs, we show that bound-state formation can be
faster than annihilation into radiation in the regime where the Sommerfeld
effect is important. The field-theoretic formalism outlined here can be
generalised to compute bound-state formation cross-sections in a variety of
theories, including theories featuring non-Abelian (albeit non-confining)
interactions, such as the electroweak interactions.Comment: 36 pages + appendices + references, 9 figures, 1 table; v2: published
versio
Dark matter (DM) charged under a dark U (1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for Fermi, Ams-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.