Asymmetric dark matter models are based on the hypothesis that the present-day abundance of dark matter has the same origin as the abundance of ordinary or "visible" matter: an asymmetry in the number densities of particles and antiparticles. They are largely motivated by the observed similarity in the mass densities of dark and visible matter, with the former observed to be about five times the latter. This review discusses the construction of asymmetric dark matter models, summarizes cosmological and astrophysical implications and bounds, and touches on direct detection prospects and collider signatures.
Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth ͑static limit͒. We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade ͑by many orders of magnitude͒ the big bang nucleosynthesis ͑BBN͒ bounds on the mixing parameters ␦m 2 and sin 2 2 0 describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the and/or neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.