Isostructural Zn(II)/Cd(II) mixed ligand coordination polymers (CPs) {[M(IPA)(L)]} (CP1 and CP2) built from isophthalic acid (HIPA) and 3-pyridylcarboxaldehyde nicotinoylhydrazone (L) were prepared using versatile synthetic routes: viz., diffusion of precursor solutions, conventional reflux methods, and green mechanochemical (grinding) reactions. Both robust CPs synthesized by different routes were characterized by various analytical methods, and their thermal and chemical stability as well as the phase purity was established. Crystallographic studies revealed that CP1 and CP2 are isostructural frameworks and feature a double-lined two-dimensional network composed of Zn/Cd nodes connected through IPA and pillared by the Schiff base ligand L with a double-walled edge. The photoluminescent (PL) properties of CP1 and CP2 have been exploited as dual detection fluorosensors for hexavalent chromate anions (CrO/CrO) and 2,4,6-trinitrophenol (TNP) because it was observed that the emission intensity of aqueous suspensions of CPs selectively quenches by chromate anions or TNP among large pools of different anions or nitro compounds, respectively. Competitive experiments in the presence of interfering anions/other nitro compounds also revealed no major effect in the quenching efficiency, suggesting the selective detection of hexavalent chromate anions as well as TNP by the LCPs. The limits of detection by CP1 for CrO/CrO and TNP are 4 ppm/4 ppm and 28 ppb, respectively, whereas the limits of detection by CP2 for the same analytes are 1 ppm/1 ppm and 14 ppb, respectively. A probable mechanism for the quenching phenomena is also discussed.
The recent developments and prospects of fluorosensors with a handful of recent examples based on mixed ligand Zn(ii)/Cd(ii) coordination polymers for aqueous phase detection of organic as well as inorganic pollutants have been discussed.
Zn(II)/Cd(II)-based dual ligand Luminescent Metal-Organic Frameworks (LMOFs) {[M(ATA)(L)]}·xHO (1) and (2) were synthesized by versatile synthetic routes, viz., diffusion of precursor solutions, conventional reflux, and green mechanochemical (grinding) reactions from bipyridyl-based Schiff base, (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and amino functionalized 2-aminoterephthalic acid (HATA) as linkers. Chemical and thermal stability, phase purity, and characterization of both LMOFs were established by various analytical methods. SXRD analysis revealed the 3D framework is composed of two-dimensional [M(ATA)] nets doubly pillared by L through the terminal nitrogen atom. Selective and sensitive detection of chromate anions (CrO/CrO) and Fe/Pd cations in the aqueous phase by fluorescent quenching of the LMOFs 1 and 2 has been established. Competitive experiments in the presence of interfering anions/cations with 1 and 2 revealed no major change in the quenching efficiency. The observed limits of detection (LOD) values by 1 for CrO/CrO were 0.25 μM (48 ppb)/0.43 μM (126 ppb) and for Fe/Pd were 3.76 μM (0.61 ppm)/0.20 μM (35 ppb), whereas LOD values by 2 were 0.18 μM (35 ppb)/0.19 μM (55 ppb) and 1.77 μM (0.29 ppm)/0.10 μM (18 ppb), respectively. Simple fluorescent-based test paper strips have been developed for reliable and visual detection of the mentioned analytes in practical applications. The present investigation clearly demonstrates selective detection of CrO/CrO and Fe/Pd in aqueous media, and the probable mechanism for the quenching phenomena based on structural aspects has also been discussed.
Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.