Pore geometry is an important parameter in reservoir characterization that affects the permeability of reservoirs and can also be a controlling factor on the impact of pressure and saturation on reservoirs elastic properties. We use SLS (Selective Laser Sintering) 3D printing technology to build physical models to experimentally investigate the impacts of pore aspect ratio on P-, and S- wave velocities and amplitude variation with offset (AVO). We printed six models to study the effects of the pore aspect ratio of prolate and oblate pore structures on elastic properties and AVO signatures. We find that the P-wave velocity is reduced by decreasing the pore aspect ratio (flatter pore structure), whereas the shear wave velocity is less sensitive to the pore aspect ratio. This effect is reduced when the samples are water saturated. We present new experimental and processing techniques to extract realistic AVO signatures from our experimental data and show that the pore aspect ratio has similar effects on AVO as fluid compressibility. This shows that not considering the pore aspect ratio in AVO analysis can lead to misleading interpretations. We further show that these effects are reduced in water-saturated samples.
5 Key Points: 6 • We use experimental observations of nonlinear wave interactions to separate changes 7 in crack opening and sliding as a function of applied load.8• Our experiments support the idea that the nonlinear wave interactions are more 9 sensitive to these crack properties than are linear wave parameters. 10
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.