Two new globin proteins have recently been discovered in vertebrates, neuroglobin in neurons and cytoglobin in all tissues, both showing heme hexacoordination by the distal His(E7) in the absence of gaseous ligands. In analogy to hemoglobin and myoglobin, neuroglobin and cytoglobin are supposedly involved in O 2 storage and delivery, although their physiological role remains to be solved. Here we report O 2 equilibria of recombinant human neuroglobin (NGB) and cytoglobin (CYGB) measured under close to physiological conditions and at varying temperature and pH ranges. NGB shows both alkaline and acid Bohr effects (pH-dependent O 2 affinity) and temperature-dependent enthalpy of oxygenation. O 2 and CO binding equilibrium studies on neuroglobin mutants strongly suggest that the bound O 2 is stabilized by interactions with His(E7) and that this residue functions as a major Bohr group in the presence of Lys(E10). As shown by the titration of free thiols with 4,4 -dithiodipyridine and by mass spectrometry, this mechanism of modulating O 2 affinity is independent of formation of an internal disulfide bond under the experimental conditions used, which stabilize thiols in the reduced form. In CYGB, O 2 binding is cooperative, consistent with its proposed dimeric structure. Similar to myoglobin but in contrast to NGB, O 2 binding to CYGB is pH-independent and exothermic throughout the temperature range investigated. Our data support the hypothesis that CYGB may be involved in O 2 -requiring metabolic processes. In contrast, the lower O 2 affinity in NGB does not appear compatible with a physiological role involving mitochondrial O 2 supply at the low O 2 tensions found within neurons.
SummaryThe Escherichia coli ompA mRNA, encoding a highly abundant outer membrane protein, has served as a model for regulated mRNA decay in bacteria. The halflife of this transcript correlates inversely with the bacterial growth rate and is growth stage-dependent. The stability of the messenger is determined by the 5 ′ ′ ′ ′ -untranslated region which possesses cleavage sites for RNase E. Hfq binds to this region, is essential for controlling the stability and has been suggested to directly regulate ompA mRNA decay. Here we report that the 78 nucleotide SraD RNA, which is highly conserved among Enterobacteriaceae, acts in destabilizing the ompA transcript when rapidly grown cells enter the stationary phase of growth. During this growth-stage the expression of SraD RNA becomes strongly increased. The SraD-mediated decay of ompA mRNA depends on Hfq and in vitro studies revealed that Hfq facilitates binding of the regulatory RNA to the translational initiation region of the messenger. Deletion of sraD , however, does not significantly affect the stability of the ompA mRNA in slowly growing cells. Our results indicate that distinct regulatory circuits are responsible for growth phase-and growth rate-dependent control of the ompA mRNA stability.
Mineral deficiency limits crop production in most soils and in Asia alone, about 50% of rice lands are phosphorous deficient. In an attempt to determine the mechanism of rice adaptation to phosphorous deficiency, changes in proteome patterns associated with phosphorous deficiency have been investigated. We analyzed the parental line Nipponbare in comparison to its near isogenic line (NIL6-4) carrying a major phosphorous uptake QTL (Pup1) on chromosome 12. Using 2-DE, the proteome pattern of roots grown under 1 and 100 microM phosphorous were compared. Out of 669 proteins reproducibly detected on root 2-DE gels, 32 proteins showed significant changes in the two genotypes. Of them, 17 proteins showed different responses in two genotypes under stress condition. MS resulted in identification of 26 proteins involved in major phosphorous deficiency adaptation pathways including reactive oxygen scavenging, citric acid cycle, signal transduction, and plant defense responses as well as proteins with unknown function. Our results highlighted a coordinated response in NIL in response to phosphorous deficiency which may confer higher adaptation to nutrient deficiency.
Introduction Thyroid cancer (TC) is an important common endocrine malignancy, and its incidence has increased in the past decades. The current TC diagnosis and classification tools are fine-needle aspiration (FNA) and histological examination following thyroidectomy. The metabolite profile alterations of thyroid cells (oncometabolites) can be considered for current TC diagnosis and management protocols. Methods This systematic review focuses on metabolite alterations within the plasma, FNA specimens, and tissue of malignant TC contrary to benign, goiter, or healthy TC samples. A systematic search of MEDLINE (PubMed), Scopus, Embase, and Web of Science databases was conducted, and the final 31 studies investigating metabolite biomarkers of TC were included. Results A total of 15 targeted studies and 16 untargeted studies revealed several potential metabolite signatures of TC such as glucose, fructose, galactose, mannose, 2-keto- d -gluconic acid and rhamnose, malonic acid and inosine, cholesterol and arachidonic acid, glycosylation (immunoglobulin G [IgG] Fc-glycosylation), outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 4 (MCT4), choline, choline derivatives, myo-/scyllo-inositol, lactate, fatty acids, several amino acids, cell membrane phospholipids, estrogen metabolites such as 16 alpha-OH E1/2-OH E1 and catechol estrogens (2-OH E1), and purine and pyrimidine metabolites, which were suggested as the TC oncometabolite. Conclusion Citrate was suggested as the first most significant biomarker and lactate as the second one. Further research is needed to confirm these biomarkers as the TC diagnostic oncometabolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.