IntroductionTransforming growth factor-beta 1(TGF-β1) is a regulatory protein, involved in bone fracture healing. Circulating TGF-β1 levels have been reported to be a predictor of delayed bone healing and non-union, suggesting active relationship between tissue and circulating TGF-β1 in fracture healing. The purpose of this study was to analyse TGF-β1 local and serum concentrations in fracture healing to further contribute to the understanding of molecular regulation of fracture healing.Patients and methodsSerum samples of 113 patients with long bone fractures were collected over a period of 6 months following a standardised time schedule. TGF-β1 serum concentrations were measured using ELISA. Patients were assigned to 2 groups: Group 1 contained 103 patients with physiological healing. Group 2 contained 10 patients with impaired healing. Patients in both groups were matched. One patient of the group 2 had to be excluded because of missing match partner. In addition, fracture haematoma from 11 patients of group 1 was obtained to analyse local TGF-β1 concentrations. 33 volunteers donated serum which served as control.ResultsTGF-β1 serum concentrations increased during the early healing period and were significantly higher in patients with physiological healing compared to controls (P = 0.04). Thereafter, it decreased continuously between weeks 2 and 8 and fell again after week 8. TGF-β1 serum concentrations in patients with physiological healing were significantly higher at week 24 compared to controls (P = 0.05). In non-unions, serum concentrations differed significantly from those of controls at week 6 (P = 0.01). No significant difference in between patients with physiological and impaired fracture healing was observed. Fracture haematoma contained significantly higher TGF-β1 concentrations than peripheral serum of the patients (P = 0.017).ConclusionElevated levels of TGF-β1 in haematoma and in serum after bone fracture especially during the entire healing process indicate its importance for fracture healing.
Although many studies describe the endoprosthetic replacement as the safer method to treat pathologic femur fractures, our data showed that intramedullary stabilization and endoprosthetic replacement to be safe, and equivalent alternatives to treat complete pathologic fractures of the femur in patients with advanced metastatic disease.
Vascular endothelial growth factor (VEGF) plays an important role in the bone repair process as a potent mediator of angiogenesis and it influences directly osteoblast differentiation. Inhibiting VEGF suppresses angiogenesis and callus mineralization in animals. However, no data exist so far on systemic expression of VEGF with regard to delayed or failed fracture healing in humans. One hundred fourteen patients with long bone fractures were included in the study. Serum samples were collected over a period of 6 months following a standardized time schedule. VEGF serum concentrations were measured. Patients were assigned to one of two groups according to their course of fracture healing. The first group contained 103 patients with physiological fracture healing. Eleven patients with delayed or nonunions formed the second group of the study. In addition, 33 healthy volunteers served as controls. An increase of VEGF serum concentration within the first 2 weeks after fracture in both groups with a following decrease within 6 months after trauma was observed. Serum VEGF concentrations in patients with impaired fracture healing were higher compared to the patients with physiological healing during the entire observation period. However, statistically significant differences were not observed at any time point between both groups. VEGF concentrations in both groups were significantly higher than those in controls. The present results show significantly elevated serum concentrations of VEGF in patients after fracture of long bones especially at the initial healing phase, indicating the importance of VEGF in the process of fracture healing in humans. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.