The deep layers of the superior colliculus (SC) integrate multisensory inputs and initiate an orienting response toward the source of stimulation (target). Multisensory enhancement, which occurs in the deep SC, is the augmentation of a neural response to sensory input of one modality by input of another modality. Multisensory enhancement appears to underlie the behavioral observation that an animal is more likely to orient toward weak stimuli if a stimulus of one modality is paired with a stimulus of another modality. Yet not all deep SC neurons are multisensory. Those that are exhibit the property of inverse effectiveness: combinations of weaker unimodal responses produce larger amounts of enhancement. We show that these neurophysiological findings support the hypothesis that deep SC neurons use their sensory inputs to compute the probability that a target is present. We model multimodal sensory inputs to the deep SC as random variables and cast the computation function in terms of Bayes' rule. Our analysis suggests that multisensory deep SC neurons are those that combine unimodal inputs that would be more uncertain by themselves. It also suggests that inverse effectiveness results because the increase in target probability due to the integration of multisensory inputs is larger when the unimodal responses are weaker.
For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single non-touching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with non-uniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of Superpixel, Graph-Cut, Mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.
Follicular Lymphoma (FL) accounts for 20-25% of non-Hodgkin lymphomas in the United States. The first step in grading FL is identifying follicles. Our paper discusses a novel technique to segment follicular regions in H&E stained images. The method is based on three successive steps: 1) region-based segmentation, 2) iterative shape index (concavity index) calculation, 3) and recursive watershed. A novel aspect of this method is the use of iterative Concavity Index (CI) to control the follicular splitting process in recursive watershed. CI takes into consideration the convex hull of the object and the closest area surrounding it. The mean Zijbendos similarity index (ZSI) final segmentation score on fifteen cases was 78.33%, with a standard deviation of 2.83.
In this paper, we are proposing a novel automated method to recognize centroblast (CB) cells from non-centroblast (Non-CB) cells for computer-assisted evaluation of follicular lymphoma tissue samples. The method is based on training and testing of a quadratic discriminant analysis (QDA) classifier. The novel aspects of this method are the identification of the CB object with prior information, and the introduction of the principal component analysis (PCA) in the spectral domain to extract color texture features. Both geometric and texture features are used to achieve the classification. Experimental results on real follicular lymphoma images demonstrate that the combined feature space improved the performance of the system significantly. The implemented method can identify centroblast cells (CB) from non-centroblast cells (non-CB) with a classification accuracy of 82.56%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.