A numerical study is reported to investigate the entropy generation due to forced convection in a parallel plate channel filled by a saturated porous medium. Two different thermal boundary conditions are considered being isoflux and isothermal walls. Effects of the Péclet number, the porous medium shape factor, the dimensionless temperature difference for isothermal walls, the dimensionless heat flux for isoflux walls, and the Brinkman number on the Bejan number as well as the local and average dimensionless entropy generation rate are examined.
The present study explores CFD analysis of a supercritical carbon dioxide (SCO2) radial-inflow turbine generating 100kW from a concentrated solar resource of 560oC with a pressure ratio of 2.2. Two methods of real gas property estimations including real gas equation of estate and real gas property (RGP) file - generating a required table from NIST REFPROP - were used. Comparing the numerical results and time consumption of both methods, it was shown that equation of states could insert a significant error in thermodynamic property prediction. Implementing the RGP table method indicated a very good agreement with NIST REFPROP while it had slightly more computational cost compared to the RGP table method.
Entropy generation for thermally developing forced convection in a porous medium bounded by two isothermal parallel plates is investigated analytically on the basis of the Darcy flow model where the viscous dissipation effects had also been taken into account. A parametric study showed that decreasing the group parameter and the Péclet number increases the entropy generation while for the Brinkman number the converse is true. Heatline visualization technique is applied with an emphasis on Br<0 case where there is somewhere that heat transfer changes direction at some streamwise location to the wall instead of its original direction, i.e. from the wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.