The present study aimed to analyze and compare the chemical profile and antioxidant capacity of propolis from different bee species and different regions. The chemical profiles of propolis from six stingless bee species (Tetragonula iridipennis, T. laeviceps, Lepidotrigona terminata, L. ventralis, Lisotrigona carpenteri and Homotrigona apicalis) collected from a total of eight locations in Vietnam were investigated by gas chromatography–mass spectrometry (GC-MS). More than 70 compounds were identified, amongst which phenolic lipids (cardanols, resorcinols and anacardic acids), aromatic acids, triterpenes and xanthones. Taxonomic markers for Mangifera indica (phenolic lipids and cycloartane triterpenes) were detected in propolis from bees of the genera Tetragonula and Lepidotrigona, although in different amounts, whereas propolis from H. apicalis was characterized by triterpenes of the amyrine type, typical of dipterocarp trees. A clear discrimination between both groups was observed by principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA). Propolis from Tetragonula and Lepidotrigona spp. and from Lisotrigona carpenteri, which is rich in xanthones, possesses higher radical scavenging and ferric-reducing capacity than that from H. apicalis. Propolis produced by all six stingless bee species in Vietnam was analyzed for the first time. In addition, this is the first report on L. carpenteri propolis.
Lavender (L. angustifolia Mill.) is an important essential oil-bearing and medicinal plant with high commercial value. Lavender scent components can be derived not only as an essential oil but also as lavender concrete or absolute. The development of reliable analytical methods for origin assessment and quality assurance is of significant fundamental importance and high practical interest. Therefore, a comprehensive chemical profiling of seven industrial samples of Bulgarian lavender absolute (L. angustifolia Mill.) was performed by means of gas chromatography–mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID). As a result, 111 individual compounds were identified by GC/MS, and their quantitative content was simultaneously determined by GC-FID, representing 94.28–97.43% of the total contents of the lavender absolute. According to our results, the main constituents of lavender absolute (LA) are representatives of the terpene compounds (with the dominating presence of oxygenated monoterpenes, 52.83–80.55%), followed by sesquiterpenes (7.80–15.21%) and triterpenoids (as minor components). Coumarins in various amounts (1.79–14.73%) and aliphatic compounds (hydrocarbons, ketones, esters, etc.) are found, as well. The acyclic monoterpene linalool is the main terpene alcohol and, together with its ester linalyl acetate, are the two main constituents in the LAs. Linalool was found in concentrations of 27.33–38.24% in the LA1-LA6 samples and 20.74% in the LA7 samples. The amount of linalyl acetate was in the range of 26.58 to 37.39% in the LA1–LA6 samples, while, surprisingly, it was not observed in LA7. This study shows that the chemical profile of the studied LAs is close to the lavender essential oil (LO), fulfilling most of the requirements of the International Standard ISO 3515:2002.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.