We consider the problem of pipelined filters, where a continuous stream of tuples is processed by a set of commutative filters. Pipelined filters are common in stream applications and capture a large class of multiway stream joins. We focus on the problem of ordering the filters adaptively to minimize processing cost in an environment where stream and filter characteristics vary unpredictably over time. Our core algorithm, A-Greedy (for Adaptive Greedy), has strong theoretical guarantees: If stream and filter characteristics were to stabilize, A-Greedy would converge to an ordering within a small constant factor of optimal. (In experiments A-Greedy usually converges to the optimal ordering.) One very important feature of A-Greedy is that it monitors and responds to selectivities that are correlated across filters (i.e., that are nonindependent), which provides the strong quality guarantee but incurs run-time overhead. We identify a three-way tradeoff among provable convergence to good orderings, run-time overhead, and speed of adaptivity. We develop a suite of variants of A-Greedy that lie at different points on this tradeoff spectrum. We have implemented all our algorithms in the STREAM prototype Data Stream Management System and a thorough performance evaluation is presented.
In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders have arbitrary demand and budget constraints (and additive valuations). Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with a discrete type space for each bidder, where her valuations for different items can be correlated. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles.
In sensor networks, data acquisition frequently takes place at low-capability devices. The acquired data is then transmitted through a hierarchy of nodes having progressively increasing network bandwidth and computational power. We consider the problem of executing queries over these data streams, posed at the root of the hierarchy. To minimize data transmission, it is desirable to perform "in-network" query processing: do some part of the work at intermediate nodes as the data travels to the root. Most previous work on in-network query processing has focused on aggregation and inexpensive filters. In this paper, we address in-network processing for queries involving possibly expensive conjunctive filters, and joins. We consider the problem of placing operators along the nodes of the hierarchy so that the overall cost of computation and data transmission is minimized. We show that the problem is tractable, give an optimal algorithm, and demonstrate that a simpler greedy operator placement algorithm can fail to find the optimal solution. Finally we define a number of interesting variations of the basic operator placement problem and demonstrate their hardness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.