In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders have arbitrary demand and budget constraints (and additive valuations). Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with a discrete type space for each bidder, where her valuations for different items can be correlated. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles.
We present the first deterministic data structures for maintaining approximate minimum vertex cover and maximum matching in a fully dynamic graph G = (V, E), with |V | = n and |E| = m, in o( √ m ) time per update. In particular, for minimum vertex cover we provide deterministic data structures for maintaining a (2+ ) approximation in O(log n/ 2 ) amortized time per update. For maximum matching, we show how to maintain a (3 + ) approximation in O(min( √ n/ , m 1/3 / 2 )) amortized time per update, and a (4 + ) approximation in O(m 1/3 / 2 ) worst-case time per update. Our data structure for fully dynamic minimum vertex cover is essentially near-optimal and settles an open problem by Onak and Rubinfeld [13]. * An extended abstract of this paper, not containing the algorithm in Section 4 and not containing the proof of Theorem 2.11, has been accepted for publication in ACM-SIAM Symposium on Discrete Algorithms (SODA)' 2015.
While in many graph mining applications it is crucial to handle a stream of updates efficiently in terms of both time and space, not much was known about achieving such type of algorithm. In this paper we study this issue for a problem which lies at the core of many graph mining applications called densest subgraph problem. We develop an algorithm that achieves time- and space-efficiency for this problem simultaneously. It is one of the first of its kind for graph problems to the best of our knowledge. Given an input graph, the densest subgraph is the subgraph that maximizes the ratio between the number of edges and the number of nodes. For any ε>0, our algorithm can, with high probability, maintain a (4+ε)-approximate solution under edge insertions and deletions using ~O(n) space and ~O(1) amortized time per update; here, $n$ is the number of nodes in the graph and ~O hides the O(polylog_{1+ε} n) term. The approximation ratio can be improved to (2+ε) with more time. It can be extended to a (2+ε)-approximation sublinear-time algorithm and a distributed-streaming algorithm. Our algorithm is the first streaming algorithm that can maintain the densest subgraph in one pass. Prior to this, no algorithm could do so even in the special case of an incremental stream and even when there is no time restriction. The previously best algorithm in this setting required O(log n) passes [BahmaniKV12]. The space required by our algorithm is tight up to a polylogarithmic factor. QC 20150811
In this paper, we consider the problem of designing incentive compatible auctions for multiple (homogeneous) units of a good, when bidders have private valuations and private budget constraints. When only the valuations are private and the budgets are public, Dobzinski et al [6] show that the adaptive clinching auction is the unique incentive-compatible auction achieving Pareto-optimality. They further show that this auction is not truthful with private budgets, so that there is no deterministic Pareto-optimal auction with private budgets. Our main contribution is to show the following Budget Monotonicity property of this auction: When there is only one infinitely divisible good, a bidder cannot improve her utility by reporting a budget smaller than the truth. This implies that the adaptive clinching auction is incentive compatible when over-reporting the budget is not possible (for instance, when funds must be shown upfront). We can also make reporting larger budgets suboptimal with a small randomized modification to the auction. In either case, this makes the modified auction Pareto-optimal with private budgets. We also show that the Budget Monotonicity property does not hold for auctioning indivisible units of the good, showing a sharp contrast between the divisible and indivisible cases.The Budget Monotonicity property also implies other improved results in this context. For revenue maximization, the same auction improves the best-known competitive ratio due to Abrams [1] by a factor of 4, and asymptotically approaches the performance of the optimal single-price auction.Finally, we consider the problem of revenue maximization (or social welfare) in a Bayesian setting. We allow the bidders have public size constraints (on the amount of good they are willing to buy) in addition to private budget constraints. We show a simple poly-time computable 5.83-approximation to the optimal Bayesian incentive compatible mechanism, that is implementable in dominant strategies. Our technique again crucially needs the ability to prevent bidders from over-reporting budgets via randomization. We show the approximation result via designing a rounding scheme for an LP relaxation of the problem (related to Myerson's LP), which may be of independent interest.
We consider the problem of maintaining an approximately maximum (fractional) matching and an approximately minimum vertex cover in a dynamic graph. Starting with the seminal paper by Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. There remains, however, a polynomial gap between the best known worst case update time and the best known amortised update time for this problem, even after allowing for randomisation. Specifically, Bernstein and Stein [ICALP 2015, SODA 2016 have the best known worst case update time. They present a deterministic data structure with approximation ratio (3/2 + ) and worst case update time O(m 1/4 / 2 ), where m is the number of edges in the graph. In recent past, Gupta and Peng [FOCS 2013] gave a deterministic data structure with approximation ratio (1+ ) and worst case update time O( √ m/ 2 ). No known randomised data structure beats the worst case update times of these two results. In contrast, the paper by Onak and Rubinfeld [STOC 2010] gave a randomised data structure with approximation ratio O(1) and amortised update time O(log 2 n), where n is the number of nodes in the graph. This was later improved by Baswana, Gupta and Sen [FOCS 2011] and Solomon [FOCS 2016], leading to a randomised date structure with approximation ratio 2 and amortised update time O(1).We bridge the polynomial gap between the worst case and amortised update times for this problem, without using any randomisation. We present a deterministic data structure with approximation ratio (2 + ) and worst case update time O(log 3 n), for all sufficiently small constants .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.