State space methods have proven indispensable in neural data analysis. However, common methods for performing inference in state-space models with non-Gaussian observations rely on certain approximations which are not always accurate. Here we review direct optimization methods that avoid these approximations, but that nonetheless retain the computational efficiency of the approximate methods. We discuss a variety of examples, applying these direct optimization techniques to problems in spike train smoothing, stimulus decoding, parameter estimation, and inference of synaptic properties. Along the way, we point out connections to some related standard statistical methods, including spline smoothing and isotonic regression. Finally, we note that the computational methods reviewed here do not in fact depend on the state-space setting at all; instead, the key property we are exploiting involves the bandedness of certain matrices. We close by discussing some applications of this more general point of view, including Markov chain Monte Carlo methods for neural decoding and efficient estimation of spatially-varying firing rates.
There has recently been a great deal of interest in inferring network connectivity from the spike trains in populations of neurons. One class of useful models that can be fit easily to spiking data is based on generalized linear point process models from statistics. Once the parameters for these models are fit, the analyst is left with a nonlinear spiking network model with delays, which in general may be very difficult to understand analytically. Here we develop mean-field methods for approximating the stimulus-driven firing rates (in both the time-varying and steady-state cases), auto- and cross-correlations, and stimulus-dependent filtering properties of these networks. These approximations are valid when the contributions of individual network coupling terms are small and, hence, the total input to a neuron is approximately gaussian. These approximations lead to deterministic ordinary differential equations that are much easier to solve and analyze than direct Monte Carlo simulation of the network activity. These approximations also provide an analytical way to evaluate the linear input-output filter of neurons and how the filters are modulated by network interactions and some stimulus feature. Finally, in the case of strong refractory effects, the mean-field approximations in the generalized linear model become inaccurate; therefore, we introduce a model that captures strong refractoriness, retains all of the easy fitting properties of the standard generalized linear model, and leads to much more accurate approximations of mean firing rates and cross-correlations that retain fine temporal behaviors.
Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.
Summary The paper considers the problem of out‐of‐sample risk estimation under the high dimensional settings where standard techniques such as K‐fold cross‐validation suffer from large biases. Motivated by the low bias of the leave‐one‐out cross‐validation method, we propose a computationally efficient closed form approximate leave‐one‐out formula ALO for a large class of regularized estimators. Given the regularized estimate, calculating ALO requires a minor computational overhead. With minor assumptions about the data‐generating process, we obtain a finite sample upper bound for the difference between leave‐one‐out cross‐validation and approximate leave‐one‐out cross‐validation, |LO−ALO|. Our theoretical analysis illustrates that |LO−ALO|→0 with overwhelming probability, when n,p→∞, where the dimension p of the feature vectors may be comparable with or even greater than the number of observations, n. Despite the high dimensionality of the problem, our theoretical results do not require any sparsity assumption on the vector of regression coefficients. Our extensive numerical experiments show that |LO−ALO| decreases as n and p increase, revealing the excellent finite sample performance of approximate leave‐one‐out cross‐validation. We further illustrate the usefulness of our proposed out‐of‐sample risk estimation method by an example of real recordings from spatially sensitive neurons (grid cells) in the medial entorhinal cortex of a rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.