Background: Hearing loss is defined as worsening of hearing acuity and is usually expressed as an increase in the hearing threshold. Tinnitus, defined as “ringing in the ear”, is a common and often disturbing accompaniment of hearing loss. Hearing loss and environmental exposures to noise are increasingly recognized health problems. Objectives: The objective was to assess whether the exposure-response relationship can be established between exposures to non-occupational noise and permanent hearing outcomes such as permanent hearing loss and tinnitus. Methods: Information sources: Computer searches of all accessible medical and other databases (PubMed, Web of Science, Scopus) were performed and complemented with manual searches. The search was not limited to a particular time span, except for the effects of personal listening devices (PLDs). The latter was limited to the years 2008–June 2015, since previous knowledge was summarized by SCENIHR descriptive systematic review published in 2008. Study eligibility criteria: The inclusion criteria were as follows: the exposure to noise was measured in sound pressure levels (SPLs) and expressed in individual equivalent decibel values (LEX,8h), the studies included both exposed and reference groups, the outcome was a permanent health effect, i.e., permanent hearing loss assessed with pure-tone audiometry and/or permanent tinnitus assessed with a questionnaire. The eligibility criteria were evaluated by two independent reviewers. Study appraisal and synthesis methods: The risk of bias was assessed for all of the papers using a template for assessment of quality and the risk of bias. The GRADE (grading of recommendations assessment, development, and evaluation) approach was used to assess the overall quality of evidence. Meta-analysis was not possible due to methodological heterogeneity of included studies and the inadequacy of data. Results: Out of 220 references identified, five studies fulfilled the inclusion criteria. All of them were related to the use of PLDs and comprised in total of 1551 teenagers and young adults. Three studies used hearing loss as the outcome and three tinnitus. There was a positive correlation between noise level and hearing loss either at standard or extended high frequencies in all three of the studies on hearing loss. In one study, there was also a positive correlation between the duration of PLD use and hearing loss. There was no association between prolonged listening to loud music through PLDs and tinnitus or the results were contradictory. All of the evidence was of low quality. Limitations: The studies are cross-sectional. No study provides odds ratios of hearing loss by the level of exposure to noise. Conclusions: While using very strict inclusion criteria, there is low quality GRADE evidence that prolonged listening to loud music through PLDs increases the risk of hearing loss and results in worsening standard frequency audiometric thresholds. However, specific threshold analyses focused on stratifying risk according to clearly defined l...
Objectives: The overall aim of this study was to evaluate the perception of and annoyance due to the noise from wind turbines in populated areas of Poland. Material and Methods: The study group comprised 156 subjects. All subjects were asked to fill in a questionnaire developed to enable evaluation of their living conditions, including prevalence of annoyance due to the noise from wind turbines and the self-assessment of physical health and well-being. In addition, current mental health status of the respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where the respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. Results: It has been shown that the wind turbine noise at the calculated A-weigh ted SPL of 30-48 dB was noticed outdoors by 60.3% of the respondents. This noise was perceived as annoying outdoors by 33.3% of the respondents, while indoors by 20.5% of them. The odds ratio of being annoyed outdoors by the wind turbine noise increased along with increasing SPLs (OR = 2.1; 95% CI: 1.22-3.62). The subjects' attitude to wind turbines in general and sensitivity to landscape littering was found to have significant impact on the perceived annoyance. About 63% of variance in outdoors annoyance assessment might be explained by the noise level, general attitude to wind turbines and sensitivity to landscape littering. Conclusions: Before firm conclusions can be drawn further studies are needed, including a larger number of respondents with different living environments (i.e., dissimilar terrain, different urbanization and road traffic intensity).
Background: It has been shown that musicians are at risk of noise-induced hearing loss. The aim of the study has been to evaluate the temporary changes of hearing in the case of orchestral musicians after group rehearsals. Material and Methods: The study group comprised 18 orchestral musicians, aged 30-58 years old (mean: 40 years old) having 12-40 years (mean: 22 years) of professional experience. The temporary changes in hearing after group rehearsals were determined using transient-evoked otoacoustic emissions (TEOAEs). Noise exposures during group rehearsals were also evaluated. Results: Musicians' hearing threshold levels were higher (worse) than expected for the equivalent non-noise-exposed population. Moreover, the high frequency notched audiograms were observed in some of them. After rehearsals, during which musicians were exposed to orchestral noise at A-weighted equivalent-continuous sound pressure level (normalized to 8-h working day) varied from 75.6-83.1 dB (mean: 79.4 dB). The significant post-exposure reductions of TEOAE amplitudes (approx. 0.7 dB) both for the total response and frequency bands of 2000 and 3000 Hz were noted. However, there were no significant differences between pre-and postexposure reproducibility of TEOAE. Conclusions: Obtained results have confirmed that orchestral musicians are at risk of hearing loss due to their professional activities, even at exposures to orchestral noise less than the limit values for occupational noise. Med Pr 2015;66(4): [479][480][481][482][483][484][485][486]
Objectives: The aim of this study was to assess hearing of music students in relation to their exposure to excessive sounds. Material and Methods: Standard pure-tone audiometry (PTA) was performed in 168 music students, aged 22.5±2.5 years. The control group included 67 subjects, non-music students and non-musicians, aged 22.8±3.3 years. Data on the study subjects' musical experience, instruments in use, time of weekly practice and additional risk factors for noise-induced hearing loss (NIHL) were identified by means of a questionnaire survey. Sound pressure levels produced by various groups of instruments during solo and group playing were also measured and analyzed. The music students' audiometric hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to the International Organization for Standardization standard ISO 1999:2013. Results: It was estimated that the music students were exposed for 27.1±14.3 h/week to sounds at the A-weighted equivalent-continuous sound pressure level of 89.9±6.0 dB. There were no significant differences in HTLs between the music students and the control group in the frequency range of 4000-8000 Hz. Furthermore, in each group HTLs in the frequency range 1000-8000 Hz did not exceed 20 dB HL in 83% of the examined ears. Nevertheless, high frequency notched audiograms typical of the noise-induced hearing loss were found in 13.4% and 9% of the musicians and non-musicians, respectively. The odds ratio (OR) of notching in the music students increased significantly along with higher sound pressure levels (OR = 1.07, 95% confidence interval (CI): 1.014-1.13, p < 0.05). The students' HTLs were worse (higher) than those of a highly screened non-noise-exposed population. Moreover, their hearing loss was less severe than that expected from sound exposure for frequencies of 3000 Hz and 4000 Hz, and it was more severe in the case of frequency of 6000 Hz. Conclusions: The results confirm the need for further studies and development of a hearing conservation program for music students. Int J Occup Med Environ Health 2017;30(1):55-75
The overall purpose of this study was to assess hearing status in professional orchestral musicians. Standard pure-tone audiometry (PTA) and transient-evoked otoacoustic emissions (TEOAEs) were performed in 126 orchestral musicians. Occupational and non-occupational risk factors for noise-induced hearing loss (NIHL) were identified in questionnaire inquiry. Data on sound pressure levels produced by various groups of instruments were also collected and analyzed. Measured hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to ISO (1990.Musicians were exposed to excessive sound at weekly noise exposure levels of for 81-100 dB (mean: 86.6±4.0 dB) for 5-48 years (mean: 24.0±10.7 years). Most of them (95%) had hearing corresponds to grade 0 of hearing impairment (mean hearing threshold level at 500, 1000, 2000 and 4000 Hz lower than 25 dB). However, high frequency notched audiograms typical for noise-induced hearing loss were found in 35% of cases. Simultaneously, about 35% of audiograms showed typical for NIHL high frequency notches (mainly occurring at 6000 Hz). When analyzing the impact of age, gender and noise exposure on hearing test results both PTA and TEOAE consistently showed better hearing in females vs. males, younger vs. older musicians. But higher exposure to orchestral noise was not associated with poorer hearing tests results.The musician's audiometric hearing threshold levels were poorer than equivalent non-noise-exposed population and better (at 3000 and 4000 Hz) than expected for noise-exposed population according to ISO (1990. Thus, music impairs hearing of orchestral musicians, but less than expected from noise exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.