Borrelia burgdorferi, the pathogen of Lyme disease, cycles in nature through Ixodes ticks and mammalian hosts. At least five Complement Regulator-Acquiring Surface Proteins (BbCRASPs) are produced by B. burgdorferi, which are thought to assist spirochetes in host immune evasion. Recent studies established that BbCRASP-2 is preferentially expressed in mammals, and elicits robust antibody response in infected hosts, including humans. We show that BbCRASP-2 is ubiquitously expressed in diverse murine tissues, but not in ticks, reinforcing a role of BbCRASP-2 in conferring B. burgdorferi defense against persistent host immune threats, such as complement. BbCRASP-2 immunization, however, fails to protect mice from B. burgdorferi infection and does not modify disease, as reflected by the development of arthritis. An infectious BbCRASP-2 mutant was generated, therefore, to examine the precise role of the gene product in spirochete infectivity. Similar to wild type B. burgdorferi, BbCRASP-2 mutants remain insensitive to complement-mediated killing in vitro, retain full murine infectivity and induce arthritis. Quantitative RT-PCR assessment indicates that survivability of BbCRASP-2-deficient B. burgdorferi is not due to altered expression of other BbCRASPs. Together, these results suggest that the function of a selectively expressed B. burgdorferi gene, BbCRASP-2, is not essential for complement resistance or infectivity in the murine host.
Borrelia burgdorferi lipoprotein Lp6.6 is a differentially produced spirochete antigen. An assessment of lp6.6 expression covering representative stages of the infectious cycle of spirochetes demonstrates that the gene is solely expressed during pathogen persistence in ticks. Deletion of lp6.6 in infectious B. burgdorferi did not influence in vitro growth, or its ability to persist and induce inflammation in mice, migrate to larval or nymphal ticks or survive through the larval-nymphal molt. However, Lp6.6-deficient spirochetes displayed significant impairment in their ability to transmit from infected ticks to naïve mice, which was restored upon genetic complementation of the mutant with a wild-type copy of lp6.6, establishing that Lp6.6 plays a role in pathogen transmission from ticks to mammals. Lp6.6 is a subsurface, yet highly abundant, outer membrane antigen. Two-dimensional blue native/SDS-PAGE coupled with liquid chromatography-mass spectrometry (LC-MS/MS) analysis and protein cross-linking studies independently shows that Lp6.6 exists in multiple protein complexes in the outer membrane. We speculate that the function of Lp6.6 is connected to the physiological processes of these membrane complexes. Further characterization of differentially produced membrane antigens and associated protein complexes will likely aid in our understanding of the molecular details of B. burgdorferi persistence and transmission through a complex enzootic cycle.
The cyanobacterial small CAB-like proteins (SCPs) consist of one-helix proteins that resemble transmembrane regions of the light-harvesting proteins of plants. To determine whether these proteins are associated with protein complexes in the thylakoid membrane, an abundant member of the SCP family, ScpD, was marked with a His tag, and proteins co-isolating with His-tagged ScpD were identified. These proteins included the major Photosystem (PS) II components as well as FtsH, which is involved in degradation of the PSII complex. To ascertain specific interaction between ScpD and the PSII complex, the His-tagged protein fraction was subjected to two-dimensional blue native/ SDS-PAGE. Again, PSII components were co-isolated with ScpD-His, and ScpD-His was found to interact most strongly with CP47. ScpD association was most prominent with the monomeric form of PSII, suggesting ScpD association with PSII that is repaired. Using antibodies that recognize both ScpC and ScpD, we found the ScpC protein, which is very similar in primary structure to ScpD, to also co-isolate with the PSII complex. In contrast, ScpE did not co-isolate with a major protein complex in thylakoids. A fourth member of the SCP family, ScpB, could not be immunodetected, but was found by mass spectrometry in samples co-isolating with ScpD-His. Therefore, ScpB may be associated with ScpD as well. No association between SCPs and PSI could be demonstrated. On the basis of these and other data presented, we suggest that members of the SCP family can associate with damaged PSII and can serve as a temporary pigment reservoir while PSII components are being replaced.In organisms performing oxygenic photosynthesis, sunlight is absorbed by chlorophylls and other pigments, and absorbed excitation energy is transferred to the reaction centers, where the photochemical process of converting excitation energy to chemical (redox) energy takes place. These pigments are bound to proteins to keep them in their proper location and orientation so that the energy transfer is efficient and rapid and so that toxic triplet states can be quenched effectively. In plants, the vast majority of pigments, including chlorophylls a and b and various carotenoids, are bound to a family of integral membrane proteins called the light-harvesting complex (LHC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.