The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here, we present a draft map of the human proteome using high resolution Fourier transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples including 17 adult tissues, 7 fetal tissues and 6 purified primary hematopoietic cells resulted in identification of proteins encoded by 17,294 genes accounting for ~84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream ORFs. This large human proteome catalog (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.
SummaryBorrelia burgdorferi (Bb), the Lyme disease spirochaete, encodes a potential ferric uptake regulator (Fur) homologue, BosR (BB0647). Thus far, a role for BosR in Bb metabolism, gene regulation or pathogenesis has not been determined, largely due to the heretofore inability to inactivate bosR in low-passage, infectious Bb isolates. Herein, we report the generation of the first bosR-deficient mutant in a virulent strain of Bb. Whereas the bosR mutant persisted normally in ticks, the mutant was unable to infect mice, indicating that BosR is essential for Bb infection of a mammalian host. Moreover, transcriptional profiling of the bosR mutant showed that a number of genes were either positively or negatively influenced by BosR deficiency, suggesting that BosR may function both as a global repressor and activator in Bb. Strikingly, our study showed that BosR controls the expression of two major virulence-associated Bb lipoproteins, OspC and DbpA, likely via an influence on the alternative sigma factor, RpoS. This study thus not only has elucidated another key virulence gene of Bb, but also provides new insights into a previously unknown layer of gene regulation governing RpoS in Bb.
Calcium Dependent Protein Kinases are key effectors of calcium signaling in malaria parasite. PfCDPK1 is critical for asexual development of Plasmodium falciparum, but its precise function and substrates remain largely unknown. Using a conditional knockdown strategy, we here establish that this kinase is critical for the invasion of host erythrocytes. Furthermore, using a multidisciplinary approach involving comparative phosphoproteomics we gain insights into the underlying molecular mechanisms. We identify substrates of PfCDPK1, which includes proteins of Inner Membrane Complex and glideosome-actomyosin motor assembly. Interestingly, PfCDPK1 phosphorylates PfPKA regulatory subunit (PfPKA-R) and regulates PfPKA activity in the parasite, which may be relevant for the process of invasion. This study delineates the signaling network of PfCDPK1 and sheds light on mechanisms via which it regulates invasion.
Borrelia burgdorferi bb0323 encodes an immunogenic protein in mammalian hosts including humans. An analysis of bb0323 expression in vivo showed variable transcription throughout the spirochete infection cycle, with elevated expression during tick-mouse transmission. Deletion of bb0323 in infectious B. burgdorferi did not affect microbial survival in vitro, despite significant alterations in growth kinetics and cell morphology. bb0323 mutants were unable to infect either mice or ticks, and were quickly eliminated from immunocompetent and immunodeficient hosts and the vector, within the first few days of inoculation. Chromosomal complementation of the mutant with native bb0323 and phenotypic analysis in vivo indicated the significant restoration of spirochete virulence and persistence throughout the mouse-tick infection cycle. BB0323 may serve an indispensable physiological function that is more pronounced during microbial persistence and transitions between the host and the vector in vivo. Strategies to interfere with BB0323 function may interrupt the infectious cycle of spirochetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.