The evolution of an entirely green analytical system for industrial quality control of carbonated drinks is described. The developed flow system is capable of providing analytical data of the dissolved CO2, sucrose, and color of a sample consecutively in real-time. The system has been carefully designed on the basis of “reagent-free”, meaning that no added chemicals are required for the analysis. The system first vaporizes CO2 from the soft drink in a gas–liquid separation chamber, with a channel for a flow of pure water as the CO2 acceptor. The dissolved CO2 alters the conductivity of the water stream, which is directly related to the concentration of CO2 in the soft drink. The sucrose content is measured based on the “schlieren effect”, the sample plug flows out of the vaporization chamber into a colorimeter with a near-infrared/light-emitting diode (NIR/LED) as light source. The schlieren effect arises at the boundary of pure water and soft drink with refraction of light in proportion to the sugar concentration. The system also measures the absorbance of the sample using an RGB-LED. The related principles and preliminary experiments as proof of concept are described as well as the construction of the flow system for this completely reagent-free analyzer. A simple flow injection system using the schlieren effect was also developed for rapid quantitative analysis of sugar in noncarbonated soft drinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.