Organic photovoltaic cells (OPVs) have the potential of becoming a productive renewable energy technology if the requirements of low cost, high efficiency and prolonged lifetime are simultaneously fulfilled. So far, the remaining unfulfilled promise of this technology is its inadequate operational lifetime. Here, we demonstrate that the instability of NFA solar cells arises primarily from chemical changes at organic/inorganic interfaces bounding the bulk heterojunction active region. Encapsulated devices stabilized by additional protective buffer layers as well as the integration of a simple solution processed ultraviolet filtering layer, maintain 94% of their initial efficiency under simulated, 1 sun intensity, AM1.5 G irradiation for 1900 hours at 55 °C. Accelerated aging is also induced by exposure of light illumination intensities up to 27 suns, and operation temperatures as high as 65 °C. An extrapolated intrinsic lifetime of > 5.6 × 104 h is obtained, which is equivalent to 30 years outdoor exposure.
We study the optoelectronic properties of a type-II heterojunction (HJ) comprising a monolayer of the transition metal dichalcogenide (TMDC), WS, and a thin film of the organic semiconductor, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA). Both theoretical and experimental investigations of the HJ indicate that Frenkel states in the organic layer and two-dimensional Wannier-Mott states in the TMDC dissociate to form hybrid charge transfer excitons at the interface that subsequently dissociate into free charges that are collected at opposing electrodes. A photodiode employing the HJ achieves a peak external quantum efficiency of 1.8 ± 0.2% at a wavelength of 430 ± 10 nm, corresponding to an internal quantum efficiency (IQE) as high as 11 ± 1% in these ultrathin devices. The photoluminescence spectra of PTCDA and PTCDA/WS thin films show that excitons in the WS have a quenching rate that is approximately seven times higher than in PTCDA. This difference leads to strong wavelength dependence in IQE.
We study the charge transfer (CT) states in small-molecule blend heterojunctions comprising the nonpolar donor, tetraphenyldibenzoperiflanthene (DBP), and the acceptor, C70, using electroluminescence and steady-state and time-resolved photoluminescence spectroscopy along with density functional theory calculations. We find that the CT exciton energy blue shifts as the C70 concentration in the blend is either decreased or increased away from 50 vol %. At 20 K, the increase in CT state lifetime is correlated with the increasing diameter of C70 nanocrystallites in the blends. A quantum confinement model is used to quantitatively describe the dependence of both CT energy and lifetime on the C70 or DBP domain size. Two discrete CT emission peaks are observed for blends whose C70 concentration is >65%, at which point C70 nanocrystallites with diameters >4 nm appear in high-resolution transmission electron micrographs. The presence of two CT states is attributed to coexistence of crystalline C70 and amorphous phases in the blends. Furthermore, analysis of CT dissociation efficiency versus photon energy suggests that the >90% dissociation efficiency of delocalized CT2 states from the crystalline phase significantly contributes to surprisingly efficient photogeneration in highly dilute (>80% C70) DBP/C70 heterojunctions.
Amorphous molecular solids are inherently disordered, exhibiting strong exciton localization. Optical microcavities containing such disordered excitonic materials have been theoretically shown to support both propagating and localized exciton‐polariton modes. Here, the ultrastrong coupling of a Bloch surface wave photon and molecular excitons in a disordered organic thin film at room temperature is demonstrated, where the major fraction of the polaritons are propagating states. The delocalized exciton‐polariton has a group velocity as high as 3 × 107 m s–1 and a lifetime of 500 fs, leading to propagation distances of over 100 µm from the excitation source. The polariton intensity shows a halo‐like pattern that is due to self‐interference of the polariton mode, from which a coherence length of 20 µm is derived and is correlated with phase breaking by polariton scattering. The demonstration of ultralong‐range exciton‐polariton transport at room temperature promises new photonic and optoelectronic applications such as efficient energy transfer in disordered condensed matter systems.
The energy loss experienced by organic photovoltaics (OPVs) is the difference between the lowest photogenerated exciton energy of donor or acceptor and the open circuit energy. It sets a fundamental limit to the open circuit voltage and hence the efficiency of OPVs. This loss can be as large as 0.7 eV for fullerene acceptors, although non-fullerene acceptors (NFAs) reduce this to 0.6 eV. Here, we systematically quantify the relationship between charge transfer energy loss (Δ ), non-radiative recombination loss, exciton binding energy, and intra-and inter-molecular electron-phonon couplings. Density functional theory and comprehensive quantum mechanical modeling is used to associate molecular volume, effective conjugation length, and the nonbonding character of molecules to these several energy losses. Nonradiative recombination in donor/NFA heterojunctions is quantified by the charge transfer state emission quantum yield, and its Frank-Condon shift. Our analytical results are consistent with measurements where Δ is varied between 0 and 0.6 eV using a variety of fullerene derivatives and thiophene-based NFAs paired with donor molecules. Molecular design rules to decrease the energy loss in OPVs derived from our analysis are provided.at the donor-acceptor HJ is: [5] .(Heterojunctions employing fullerene derivatives usually suffer from a loss of > 0.7 eV.Alternatives to fullerene acceptors have therefore been sought to reduce while extending the absorption spectrum into the infrared. The development of nonfullerene acceptors (NFAs)with acceptor-donor-acceptor (a-d-a) or perylene diimide (PDI)-based molecular motifs give freedom to tune the molecular energetics, absorption spectra and thin film morphologies through
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.