Half-light half-matter quasiparticles termed exciton-polaritons arise through the strong coupling of excitons and cavity photons. They have been used to demonstrate a wide array of fundamental phenomena and potential applications ranging from Bose-Einstein like condensation 1-3 to analog Hamiltonian simulators 4,5 and chip-scale interferometers 6 . Recently the two dimensional transition metal dichalcogenides (TMDs) owing to their large exciton binding energies, oscillator strength and valley degree of freedom have emerged as a very attractive platform to realize exciton-polaritons at elevated temperatures 7 . Achieving electrical injection of polaritons is attractive both as a precursor to realizing electrically driven polariton lasers 8,9 as well as for high speed light-emitting diodes (LED) for communication systems 10 . Here we demonstrate an electrically driven polariton LED operating at room temperature using monolayer tungsten disulphide (WS2) as the emissive material. To realize this device, the monolayer WS2 is sandwiched between thin hexagonal boron nitride (hBN) tunnel barriers with graphene layers acting as the electrodes 11,12 . The entire tunnel LED structure is embedded inside a one-dimensional distributed Bragg reflector (DBR) based microcavity structure. The extracted external quantum efficiency is ~0.1% and is comparable to recent demonstrations of bulk organic 13 and carbon nanotube based polariton electroluminescence (EL) devices 14 . The possibility to realize electrically driven polariton LEDs in atomically thin semiconductors at room temperature presents a promising step towards achieving an inversionless electrically driven laser in these systems as well as for ultrafast microcavity LEDs using van der Waals materials.
Strong light-matter coupling results in the formation of half-light half-matter quasiparticles that take on the desirable properties of both systems such as small mass and large interactions. Controlling this coupling strength in real-time is highly desirable due to the large change in optical properties such as reflectivity that can be induced in strongly coupled systems. Here we demonstrate modulation of strong exciton-photon coupling in a monolayer WS through electric field induced gating at room temperature. The device consists of a WS field effect transistor embedded inside a microcavity structure which transitions from strong to weak coupling when the monolayer WS becomes more n-type under gating. This transition occurs due to the reduction in oscillator strength of the excitons arising from decreased Coulomb interaction in the presence of electrostatically induced free carriers. The possibility to electrically modulate a solid state system at room temperature from strong to weak coupling is highly desirable for realizing low energy optoelectronic switches and modulators operating both in quantum and classical regimes.
Amorphous molecular solids are inherently disordered, exhibiting strong exciton localization. Optical microcavities containing such disordered excitonic materials have been theoretically shown to support both propagating and localized exciton‐polariton modes. Here, the ultrastrong coupling of a Bloch surface wave photon and molecular excitons in a disordered organic thin film at room temperature is demonstrated, where the major fraction of the polaritons are propagating states. The delocalized exciton‐polariton has a group velocity as high as 3 × 107 m s–1 and a lifetime of 500 fs, leading to propagation distances of over 100 µm from the excitation source. The polariton intensity shows a halo‐like pattern that is due to self‐interference of the polariton mode, from which a coherence length of 20 µm is derived and is correlated with phase breaking by polariton scattering. The demonstration of ultralong‐range exciton‐polariton transport at room temperature promises new photonic and optoelectronic applications such as efficient energy transfer in disordered condensed matter systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.