Abstrak Indonesia telah lama mengenal dan menggunakan tanaman yang berkhasiat sebagai obat. Dari banyaknya tanaman obat yang ada di dunia, 80% tanaman obat tumbuh di hutan tropika yang berada di Indonesia. Sekitar 28.000 spesies tanaman tumbuh dan 1.000 spesies diantaranya telah digunakan sebagai tanaman obat. Dengan banyaknya spesies tanaman obat dan tingkat kemiripan yang tinggi dapat menyebabkan kesalahan dalam proses identifikasi jenis tanaman obat. Sehingga dibutuhkan bantuan komputer untuk mengenali jenis tanaman obat tersebut. Tujuan dari penelitian ini adalah untuk mengidentifikasi jenis tanaman obat menggunakan jaringan syaraf tiruan backpropagation berdasarkan ekstraksi fitur morfologi daun. Hasilnya menujukkan bahwa perubahan nilai learning rate mempengaruhi hasil identifikasi jenis tanaman obat berdasarkan fitur morfologi daun. Hasil perhitungan rata-rata nilai recognition rate sebesar 90% untuk data training dan 75,56% untuk data testing terjadi saat learning rate 0,01. Nilai learning rate terbaik untuk identifikasi jenis tanaman obat adalah 0,01 dengan jumlah rata-rata epoch sebesar 11,67 dan MSE sebesar 0,13. Ini menunjukkan bahwa metode ekstraksi fitur morfologi daun dan algoritma jaringan syaraf tiruan backpropagation sangat baik digunakan untuk mengidentifkasi jenis tanaman obat. Kata Kunci: Ekstraksi Fitur, Jaringan Syaraf Tiruan Backpropagation, Morfologi Daun, Tanaman Obat Abstract Indonesia has known and used a nutritious plant as a medicine. most of the medicinal plants in the world that is 80% of medicinal plants grown in tropical forests in Indonesia. the plant grows about 28,000 species and 1,000 species of which have been used as medicinal plants. Many species of medicinal plants with a high degree of similarity can cause errors in the process of identifying medicinal plants. Because the problem was needed computer assistance to recognize the types of medicinal plants. This research proposed to identify species of medicinal plants using backpropagation artificial neural network based on leaf morphological feature extraction. The results showed that changes in the value of learning rate influence the identification of medicinal plant species based on leaf morphology features. The calculation average of recognition rate is 90% for training data and 75.56% for data testing occurs at learning rate 0.01. The best learning rate for plant species identification is 0.01 with epoch average is 11.67 and MSE is 0.13. The results of this research concluded that the leaf morphology feature extraction method and backpropagation artificial neural network algorithm are very well used to identify the types of medicinal plants. Keywords: Backpropagation Artificial Neural Network, Feature Extraction, Leaf Morphology, Medicinal Plant
Abstrak Indonesia telah lama mengenal dan menggunakan tanaman yang berkhasiat sebagai obat. Dari banyaknya tanaman obat yang ada di dunia, 80% tanaman obat tumbuh di hutan tropika yang berada di Indonesia. Sekitar 28.000 spesies tanaman tumbuh dan 1.000 spesies diantaranya telah digunakan sebagai tanaman obat. Dengan banyaknya spesies tanaman obat dan tingkat kemiripan yang tinggi dapat menyebabkan kesalahan dalam proses identifikasi jenis tanaman obat. Sehingga dibutuhkan bantuan komputer untuk mengenali jenis tanaman obat tersebut. Tujuan dari penelitian ini adalah untuk mengidentifikasi jenis tanaman obat menggunakan jaringan syaraf tiruan backpropagation berdasarkan ekstraksi fitur morfologi daun. Hasilnya menujukkan bahwa perubahan nilai learning rate mempengaruhi hasil identifikasi jenis tanaman obat berdasarkan fitur morfologi daun. Hasil perhitungan rata-rata nilai recognition rate sebesar 90% untuk data training dan 75,56% untuk data testing terjadi saat learning rate 0,01. Nilai learning rate terbaik untuk identifikasi jenis tanaman obat adalah 0,01 dengan jumlah rata-rata epoch sebesar 11,67 dan MSE sebesar 0,13. Ini menunjukkan bahwa metode ekstraksi fitur morfologi daun dan algoritma jaringan syaraf tiruan backpropagation sangat baik digunakan untuk mengidentifkasi jenis tanaman obat. Kata Kunci: Ekstraksi Fitur, Jaringan Syaraf Tiruan Backpropagation, Morfologi Daun, Tanaman Obat Abstract Indonesia has known and used a nutritious plant as a medicine. most of the medicinal plants in the world that is 80% of medicinal plants grown in tropical forests in Indonesia. the plant grows about 28,000 species and 1,000 species of which have been used as medicinal plants. Many species of medicinal plants with a high degree of similarity can cause errors in the process of identifying medicinal plants. Because the problem was needed computer assistance to recognize the types of medicinal plants. This research proposed to identify species of medicinal plants using backpropagation artificial neural network based on leaf morphological feature extraction. The results showed that changes in the value of learning rate influence the identification of medicinal plant species based on leaf morphology features. The calculation average of recognition rate is 90% for training data and 75.56% for data testing occurs at learning rate 0.01. The best learning rate for plant species identification is 0.01 with epoch average is 11.67 and MSE is 0.13. The results of this research concluded that the leaf morphology feature extraction method and backpropagation artificial neural network algorithm are very well used to identify the types of medicinal plants. Keywords: Backpropagation Artificial Neural Network, Feature Extraction, Leaf Morphology, Medicinal Plant
Pendekatan biologi komputasi telah maju secara eksponensial dalam prediksi struktur sekunder protein yang sangat penting untuk industri farmasi. Ekstraksi fitur protein di dalam laboratorium memiliki informasi yang cukup untuk prediksi struktur sekunder protein yang digunakan dalam studi bioinformatika. Memprediksi struktur sekunder protein merupakan suatu permasalahan yang terdapat dalam bidang Bioinformatika. Terdapat beberapa metode yang telah diterapkan dengan tingkat akurasi yang dihasilkan berbeda-beda. Penelitian ini bertujuan untuk membandingkan model prediksi Support Vector Machine dengan K-Nearest Neighbor dalam memprediksi struktur sekunder protein.Dalam penelitian ini, model Support Vector Machine dan K-Nearest Neighbor disajikan dalam dataset RS126 yang terdiri dari 126 data protein dengan panjang urutan protein rata-rata 185 sekuens. Data RS126 juga terdiri atas 32% alpha helix (H), 21% beta (E), dan 47% coil (C). Masing-masing model prediksi pada penelitian ini diberikan nilai lebar sliding window sebesar 15. Nilai K = 5, K=10, dan K= 15 untuk model prediksi KNN serta Nilai C = 1, Gamma = 0,1 dan Kernel Radial Basis Function untuk model prediksi SVM. Penggunaan model Support Vector Machine dan K-Nearest Neighbor digunakan untuk memperoleh hasil yang relavan serta akurat dalam prediksi struktur sekunder. Beberapa prinsip yang diusulkan memiliki klarifikasi biologis yang menarik dan relevan. Hasil yang diperoleh menegaskan bahwa keberadaan asam amino tertentu dalam urutan protein meningkatkan stabilitas untuk prakiraan stuktur sekunder protein. Dalam penelitian ini algoritma KNN memiliki performa yang lebih baik dalam memprediksi struktur sekunder protein dibandingkan dengan algoritm SVM.
Indonesia is an agricultural country that is famous for its wealth of spices and herbal plants. Herbal plants themselves have thousands of species. There are 40,000 species of herbal plants that have been known in the world, and around 30,000 species to be in Indonesia. Herbal plants are a source of new active compounds that have pharmacological and therapeutic effects, both when used directly and through various extraction processes. Herbal plants can be distinguished from the shape of the leaves because each type of plant has different leaf features. Laboratory-based testing also requires skills in sample processing and data interpretation, in addition to timeconsuming procedures. Therefore, a simple and reliable herbal plant recognition technique is needed to quickly identify herbs, especially for those who are unable to use expensive analytical instrumentation. This study aims to identify types of herbal plants based on leaf images quickly and accurately using the Convolutional Neural Network method which is part of Deep Learning. This study uses several architectural models of Convolutional Neural Network to classify types of herbal plants. The best accuracy value with the VGG16 architecture is 90% with 93% precision, 90% recall, and 90% Fmeasure. The VGG16 architecture used epoch = 20, batch_size = 32, and validation_split = 0.2. The result show that CNN Algorithm with the VGG16 architecture is able to classify types of herbal plants with good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.