This paper describes unique plasmonic characteristics of two dimensional (2D) crystalline sheets composed of homogeneous Ag nanoparticles (AgNPs) fabricated by the Langmuir-Schaefer method at an air-water interface. The localized surface plasmon resonance (LSPR) band of the Ag nanosheet was tuned by changing the interparticle distance of AgNPs via the length of the organic capping molecules. Red shift of the LSPR band of the AgNPs sheet followed an exponential law against the interparticle distance in a similar manner to the previous reports of metal nanodisc pairs. However, the shift was much larger and less dependent on the interparticle separation gap. This phenomenon is reasonably interpreted as the long-range interaction of LSPR in the 2D sheet ('delocalized' LSPR) confirmed by simulation using the finite difference time domain (FDTD) method. The FDTD simulation also revealed additional enhancement of local electric fields on the 2D sheet compared to those on the single or paired particles.
In this paper, we report a simple yet powerful synthetic method for obtaining monodispersed silver nanoparticles by direct thermal decomposition of two materials — one is silver acetate as a source of the metal core and the other is myristic acid as a capping agent. The reaction was performed at 250°C, the boiling point of myristic acid, without additional solvent. The nucleation and growth of the particles were monitored by dynamic light scattering in order to optimize the reaction time. By this simple procedure, we could obtain uniformly sized Ag nanoparticles with the average diameter of 4.8 ± 0.1 nm. Although the particles were synthesized at high temperature, the ligand exchange between myristates and alkanethiolates can be achieved at room temperature. Significant characteristics of Ag nanoparticles attributed to localized surface plasmons were investigated.
The coordination of carboxylate capping agents on silver and gold nanoparticles is investigated by Fourier transform infrared spectroscopy (FTIR). The shift of carboxylate stretching frequency confirmed that carboxylate bound on gold nanoparticle forms unidentate coordination, while that on silver nanoparticle shows ionic bonding. The different coordinations on gold and silver NPs are reasonably interpreted by molecular orbital (MO) calculation based on metal carboxylate molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.