Aim: Protective effects of ferulic acid (FA) against ultraviolet-B (290-320 nm) radiation induced cellular changes were investigated in human dermal fibroblasts (HDFa). Materials and Methods: HDFa cells pretreated with increasing concentrations of FA (0, 10, 20, 40 μg/ml) for 30 min, were UVB irradiated and different cellular and oxidative end points were analyzed. Results: The percentage of cytotoxicity, intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential, thiobarbituric acid reactive substances (TBARS) and DNA damage, were significantly increased in 19.8 mJ/cm 2 ultraviolet-B (UVB)-exposed HDFa. Further, exposure to UVB causes significantly decreased antioxidants status in HDFa cells. Treatment of HDFa cells with FA before 30 min of UVB-irradiation significantly restored mitochondrial membrane potential, ROS levels and antioxidant status in HDFa. Further, FA treatment reverted UVB-induced mutagenesis in Ames tester strains and DNA damage in HDFa. Moreover, we noticed increased expression of GADD 45, XRCC1 and HOGG1 in UVB exposed HDFa. Conversely, FA pretreatment significantly attenuated UVB-induced expression of DNA repair genes in HDFa. Conclusion: The present findings indicate that FA act as a sunscreen rather than working at molecular level to offer photoprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.