A detailed study of the electrical transport properties of gate tunable graphene lateral tunnel diodes is presented. The graphene-Al 2 O 3 -graphene lateral tunnel diodes are fabricated on Si/SiO 2 substrates, and the fabricated devices show rectifying characteristics at the low voltage below 1 V. The rectifying behavior can be controlled by applying back gate voltages. As a result, the devices show high asymmetry and strong nonlinearity current-voltage (I-V ) characteristics, which are desirable properties for applications such as optical rectennas and infrared detectors. The electrical transport mechanism of the graphene lateral diodes is analyzed by extracting parameters from the measured I-V characteristics. We find that trap-assisted tunneling from the defect levels in the Al 2 O 3 layer is the most likely mechanism of the forward current of the fabricated graphene lateral diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.