In the study, experimental and theoretical studies were carried out to assess the influence of the vertical mounting joint zone of the tank on the stress-strain state of the defect zone. Thus, experimental tests of models of a tank wall fragment with an imperfection of the mounting joint evaluated the stress-strain state of the mounting joint zone and established the dependence of the stress concentration in the joint zone on the deflection, the width of the zone and the thickness of the tank wall. It is shown that with a 50 mm bending boom, the annular stresses increase by 1.3 times than with a 30 mm bending boom and the meridional stresses increase by 1.16 times. The same nature of the increase is observed with the stress concentration indicator. By numerical analysis of the stress-strain state of tanks with joint imperfections in the ANSYS medium, the stress-strain state of the tank is estimated for various values of the joint bending parameters ς and ξ. The dependences of the stress concentration coefficient on the geometric dimensions of the imperfection, radius and thickness of the tank wall are also obtained. From the results of calculating the stress concentration coefficient, with an increase in the dimensionless parameters ς and ξ, the values of the stress concentration coefficient Kσ increase by 1.35 times. As a result of the calculations, an interpolation polynomial (5), approximating the stress concentration coefficient Kσ, is obtained, which can be used to estimate the strength, durability and residual resource of the tank. In addition, the obtained results can be used to normalize the limiting dimensions of the imperfection of the joint and to establish the values of the coefficient, taking into account the peculiarities of the work of structures at stress concentrations.
In the study, experimental and theoretical studies were carried out to assess the influence of the shapes of dents in the tank wall on the stress-strain state of the defect zone. By testing fragments of a cylindrical tank, it was found that the most appropriate expression is (5), which could take into account the leaching of the tank wall, resulting in a decrease in the stress concentration index. At the same time, during theoretical studies in this paper, it was found that polynomials determined the stress concentration coefficient, where the obtained analytical expression data were compared with the data determined numerically in the ANSYS program, and it was found that the spread was from 2% to 10%. According to the results of a numerical study of the stress-strain state of the dent zone in the tank wall, graphical dependences of the stress concentration coefficient on the dimensionless depth of the dent for various values of the dimensionless radius of the dents and do not exceed 2% of the indicators that are obtained. At the conclusion of the experimental and numerical studies, a conclusion was made about the degree of influence of the geometric dimensions of the dents on the stress concentration index.
Precise meanings of thermophysical processes taking place in air gaps have decisive importance in composite cladding structure systems’ calculation and modeling. The climatic load conditions in Kazakhstan can significantly affect the microclimate of premises in general. In this work, a review study is carried out to obtain the relevant scientific literature on enclosing structures with air gaps under various climatic conditions. The review mainly covers research institutes from Sweden, Norway, France, Saudi Arabia, Russia, and China. On the issue of the air gap parameter’s influence on thermophysical processes, 16 papers were analyzed, and on the issue of air infiltration, 12 papers were analyzed. However, the review shows a lack of research in this area under various climatic conditions. At the same time, experience has shown that the principle of multilayer protection from climatic influences creates a favorable microclimate in buildings, but due to a possible temperature drop, wall structures made of composite building materials can be quite favorable under some conditions, and under others they may be less favorable. Therefore, working out a new energy-saving design with air gaps for climatic conditions with large temperature fluctuations during summer and winter is an urgent task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.