It has long been recognised that cities exhibit their own microclimate and are typically warmer than the surrounding rural areas. This 'mesoscale' influence is known as the urban heat island (UHI) effect and results largely from modification of surface properties leading to greater absorption of solar radiation, reduced convective cooling and lower water evaporation rates. Cities typically contain less vegetation and bodies of water than rural areas, and existing green and bluespace is often under threat from increasing population densities. This paper presents a meta-analysis of the key ways in which green and bluespace affect both urban canopy- and boundary-layer temperatures, examined from the perspectives of city-planning, urban climatology and climate science. The analysis suggests that the evapotranspiration-based cooling influence of both green and bluespace is primarily relevant for urban canopy-layer conditions, and that tree-dominated greenspace offers the greatest heat stress relief when it is most needed. However, the magnitude and transport of cooling experienced depends on size, spread, and geometry of greenspaces, with some solitary large parks found to offer minimal boundary-layer cooling. Contribution to cooling at the scale of the urban boundary-layer climate is attributed mainly to greenspace increasing surface roughness and thereby improving convection efficiency rather than evaporation. Although bluespace cooling and transport during the day can be substantial, nocturnal warming is highlighted as likely when conditions are most oppressive. However, when both features are employed together they can offer many synergistic ecosystem benefits including cooling. The ways in which green and bluespace infrastructure is applied in future urban growth strategies, particularly in countries expected to experience rapid urbanisation, warrants greater consideration in urban planning policy to mitigate the adverse effects of the UHI and enhance climate resilience.
The warming climate, projected increase in frequency and severity of extreme heat events, and the long-established heat island phenomenon are all expected to exacerbate urban environmental thermal loading. Active means used for addressing such risks are likely to increase energy consumption and emission trends to create a positive feedback loop that could threaten the health and wellbeing of urban citizens. In response, passive approaches such as green infrastructure enhancements are widely advocated, and to meet the challenges of implementing enhancements in dense cities, attention has been directed toward encouraging surface greening. This paper recognises this trend and considers vertical greening as a developing interest with application opportunity in both exterior and interior urban environments. A review of available studies and interviews with experts found most observations available to be derived from exterior applications. Interior applications consequently have yet to be investigated to determine relative value to indoor environments where most of human habitation is typically concentrated. The integration of plant science studies in this regard is highlighted as essential to develop a balanced evidence base for the enthusiasm observed for promoting indoor living wall installations.
To address the call for developing passive climate resilience strategies, the project examines the influence and effectiveness of utilising vertical greening for reducing space-conditioning loads of urban buildings and surrounding microclimates. By examining this focus, the project aims to improve the design of urban built environments that would in turn lead to health and wellbeing enhancements of their growing populations. The purpose of this paper is to present preliminary findings from a monitoring campaign carried out at an indoor atrium case study in Cambridge, UK. Key parameters monitored included soil, surface, and air temperature; relative humidity; and surface air movement. Results obtained show relatively lower air temperature and higher relative humidity levels proximate to the living wall. Wintertime monitoring has also indicated a surface flow pattern that demonstrates the presence of a modest downdraught effect. Although these modifications are modest in magnitude, they could still offer significant localised thermal comfort benefit to building occupants, as well as potential for contributing to a reduced space-conditioning load.
In response to the need to mitigate urban heat risks, green infrastructure enhancements have been widely advocated in recent times. To meet the challenges of implementing enhancements in dense cities, surface greening approaches such as vertical living walls have gained increased prominence. This paper reports on the principal challenges and drivers influencing the sustainable maintenance of such installations, identified through the inspection of ten European case studies and interviews with their management authorities. The study reports on key maintenance areas highlighted by installation managers as requiring attention. Furthermore, it reports on human engagement behavioural aspects as being a significant motivator, with installation managers assigning value to building occupant and public perception of an installation's flourishing state. The evidence reported therefore is beneficial to key decisionmakers and designers when considering the inclusion and sustainable maintenance of such greening installations.
Environmental thermal loading on urban buildings is expected to increase owing to the combined influence of a warming climate, increasing frequency and severity of extreme heat events, and the urban heat island (UHI) effect. This paper presents how a computationally efficient estimation pathway could be utilised to understand UHI influence on building energy simulations. As an example, this is examined by considering UHI influence on the space-conditioning loads of office buildings within urban and suburban conditions, and how the trend of replacing heavyweight facades with lightweight alternatives could affect their surrounding microclimates, as well as building energy use. The paper addresses this through simulations of street canyons based on the urban Moorgate and suburban Wimbledon areas of London. Results show that with all scenarios including the UHI within a dynamic thermal simulation presents between 2.5 to 9.6 % net increase in annual space-conditioning. The study also demonstrates that the trend in urban centres to replace heavyweight facades with lightweight insulated alternatives increases space-conditioning loads, which in turn increases UHI intensity to create a warming feedback loop. The study therefore stresses the significance of including microclimate loading from the UHI in estimating urban and suburban energy use, and the combined simulation approach is presented as a computationally efficient pathway for use by built environment designers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.