High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.
Type 2-diabetes, particularly poorly controlled diabetes, is a risk factor for several infections such as lower respiratory tract and skin infections. Hyperglycemia, a characteristic downstream effect of poorly controlled diabetes, has been shown to impair the function of immune cells, in particular neutrophils. Several studies have demonstrated that hyperglycemia-mediated priming of NADPH oxidase results in subsequent elevated levels of reactive oxygen species (ROS). In healthy neutrophils, ROS plays an important role in pathogen killing by phagocytosis and by induction of Neutrophil Extracellular Traps (NETs). Given the key role of ROS in autophagy, phagocytosis and NETosis, the relationship between these pathways and the role of diabetes in the modulation of these pathways has not been explored previously. Therefore, our study aimed to understand the relationship between autophagy, phagocytosis and NETosis in diabetes. We hypothesized that hyperglycemia-associated oxidative stress alters the balance between phagocytosis and NETosis by modulating autophagy. Using whole blood samples from individuals with and without type 2-diabetes (in the presence and absence of hyperglycemia), we demonstrated that (i) hyperglycemia results in elevated levels of ROS in neutrophils from those with diabetes, (ii) elevated levels of ROS increase LCIII (a marker for autophagy) and downstream NETosis. (iii) Diabetes was also found to be associated with low levels of phagocytosis and phagocytic killing of S. pneumoniae. (iv) Blocking either NADPH oxidase or cellular pathways upstream of autophagy led to a significant reduction in NETosis. This study is the first to demonstrate the role of ROS in altering NETosis and phagocytosis by modulating autophagy in type 2-diabetes.
Hepatitis C virus (HCV) is a well-known pathogen to establish chronic infection leading to end-stage liver disease. The destruction of liver tissues takes its roots under chronic inflammation and proinflammatory signaling in liver microenvironment. The viral proteins interact with certain pattern recognition receptors, including Toll-like receptors, activating the innate immune system to clear the virus. HCV achieves immune evasion through other mechanisms and induce a continuous inflammatory microenvironment via Kupffer cells and Hepatic Stellate cells. This promotes disease progression. The current study aims to elucidate that the role of Toll-like receptor 4 (TLR4) induced innate immune response in chronic inflammation in patients chronically infected with HCV. For this purpose, changes in downstream signaling cascade of TLR4 during chronic HCV infection using peripheral blood mononuclear cells of chronic HCV patients were studied. We found significant increase in expression levels of proinflammatory and profibrotic genes induced by TLR4 Myeloid differentiation factor 88 (MyD88)-dependent pathway between treatment naive and healthy controls, while no significant difference between the expressions of genes involved in TLR4 signaling was found between treatment responders and healthy controls. Interestingly, both TLR4 MyD88-dependent and-independent pathways were found to be operational in nonresponders to interferon treatment. This further strengthens the involvement of innate immune signaling as a leading factor in HCV-mediated liver disease progression and the role of TLR4 MyD88-dependent and-independent pathway in ensuring the conditions for chronic inflammation.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.