We experimentally extracted the positive bias temperature stress (PBTS)-induced trapped electron distribution within the gate dielectric in self-aligned top-gate (SA-TG) coplanar indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) using the analytical threshold voltage shift model. First, we carefully examined the effects of PBTS on the subgap density of states in IGZO TFTs to exclude the effects of defect creation on the threshold voltage shift due to PBTS. We assumed that the accumulated electrons were injected into the gate dielectric trap states near the interface through trap-assisted tunneling and were consequently moved to the trap states, which were located further away from the interface, through the Poole–Frenkel effect. Accordingly, we quantitatively analyzed the PBTS-induced electron trapping. The experimental results showed that, in the fabricated IGZO TFTs, the electrons were trapped in the shallow and deep trap states simultaneously owing to PBTS. Electrons trapped in the shallow state were easily detrapped after PBTS termination; however, those trapped in the deep state were not. We successfully extracted the PBTS-induced trapped electron data within the gate dielectric in the fabricated SA-TG coplanar IGZO TFTs by using the proposed method.
We utilized Ni as a floating capping layer in p-channel SnO thin-film transistors (TFTs) to improve their electrical performances. By utilizing the Ni as a floating capping layer, the p-channel SnO TFT showed enhanced mobility as high as 10.5 cm2·V−1·s−1. The increase in mobility was more significant as the length of Ni capping layer increased and the thickness of SnO active layer decreased. The observed phenomenon was possibly attributed to the changed vertical electric field distribution and increased hole concentration in the SnO channel by the floating Ni capping layer. Our experimental results demonstrate that incorporating the floating Ni capping layer on the channel layer is an effective method for increasing the field-effect mobility in p-channel SnO TFTs.
In this study, the effects of capping layers with different metals on the electrical performance and stability of p-channel SnO thin-film transistors (TFTs) were examined. Ni- or Pt-capped SnO TFTs exhibit a higher field-effect mobility (μFE), a lower subthreshold swing (SS), a positively shifted threshold voltage (VTH), and an improved negative-gate-bias-stress (NGBS) stability, as compared to pristine TFTs. In contrast, Al-capped SnO TFTs exhibit a lower μFE, higher SS, negatively shifted VTH, and degraded NGBS stability, as compared to pristine TFTs. No significant difference was observed between the electrical performance of the Cr-capped SnO TFT and that of the pristine SnO TFT. The obtained results were primarily explained based on the change in the back-channel potential of the SnO TFT that was caused by the difference in work functions between the SnO and various metals. This study shows that capping layers with different metals can be practically employed to modulate the electrical characteristics of p-channel SnO TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.