The preparation of Ti coatings on mild steel can both effectively improve the corrosion resistance of the substrate and reduce the application cost of Ti, which is an effective measure to improve the service performance of mild steel in the marine environment. Plasma cladding technology is an efficient method for preparing metal coatings, and the type of powder is a key process parameter for coating preparation. In this work, high-performance Ti coatings are prepared on the surface of mild steel by plasma cladding technology, and the effects of different particle sizes and shapes of Ti powders on the surface morphology, microstructure and properties of the coatings are studied. The results show that powder particle size and sphericity are the key factors affecting the morphology, structure and service performance of Ti coatings. After 1000 h of salt spray test, the spherical powder cladding coatings only suffer slight corrosion, while the irregular shape powder coating is more severely corroded. Powder cladding with moderate powder particle size and good sphericity have a smoother coating and fewer defects. Ti powders with different particle sizes and shapes all have the diffusion of Fe element during the cladding process. The surface of Ti coating prepared by spherical powder are dominated by α-Ti and Fe0.2Ti0.8 phases, while the surface of Ti coating prepared by irregular shape powder is dominated by FeTi and Ti2Fe. The interface between the coating and the substrate shows metallurgical bonding, and the increase in Ti-Fe brittle phase will deteriorate the mechanical properties and corrosion resistance of the coating. The shear strength of coatings prepared from spherical Ti powders of 75–150 μm can reach 105.18 MPa, the corrosion potential is the most positive (−0.2206 V), and the self-corrosion current density is the lowest (6.220 × 10−8 A/cm2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.