Background Mammalian sterile 20-like kinase 1 (MST1), the key component of the Hippo-YAP pathway, exhibits an important role in the pathophysiological process of various neurological disorders, including ischemic stroke and spinal cord injury. However, during subarachnoid hemorrhage, the involvement of MST1 in the pathophysiology of early brain injury remains unknown. Methods We employed intravascular filament perforation to establish the subarachnoid hemorrhage (SAH) mouse model. The MST1 inhibitor XMU-MP-1 was intraperitoneally injected at 1 h after SAH, followed by daily injections. MST1 in vivo knockdown was performed 3 weeks prior to SAH via intracerebroventricular injection of adeno-associated virus (AAV) packaged with MST1 shRNA. The SAH grade, behavioral deficits, TUNEL staining, Evans blue dye extravasation and fluorescence, brain water content, protein and cytokine expressions by Western blotting, immunofluorescence, and proteome cytokine array were evaluated. Results Following SAH, the phosphorylation level of MST1 was upregulated at 12 h, with a peak at 72 h after SAH. It was colocalized with the microglial marker Iba1. Both XMU-MP-1 and MST1 shRNA alleviated the neurological deficits, blood-brain barrier (BBB) disruption, brain edema, neuroinflammation, and white matter injury, which were induced by SAH in association with nuclear factor- (NF-) κB p65 and matrix metallopeptidase-9 (MMP-9) activation and downregulated endothelial junction protein expression. Conclusions The current findings indicate that MST1 participates in SAH-induced BBB disruption and white matter fiber damage via the downstream NF-κB-MMP-9 signaling pathway. Therefore, MST1 antagonists may serve as a novel therapeutic target to prevent early brain injury in SAH patients.
Long non-coding RNAs (lncRNAs) serve essential roles on various biological functions. Previous studies have indicated that lncRNAs are involved in the occurrence, growth and infiltration of brain tumors. LncRNA H19 is key regulator in the pathogenesis of gliomas, but the underlying mechanisms of H19-regulated tumor progression remain unknown. Therefore, we investigated the effects and mechanism of action of lncRNA H19 on the homeostasis of glioma cells. As a novel oncogenic factor, up-regulation of H19 was able to promote the proliferation of glioma cells by targeting miR-200a. Furthermore, elevated miR-200a levels could reverse H19-induced cell growth and metastasis. Overexpression of miR-200a could significantly suppress the proliferation, migration and invasion of glioma cells. These biological behavior changes in glioma cells were dependent on the binding to potential target genes including CDK6 and ZEB1. CDK6 could promote cell proliferation and its expression was remarkably increased in glioma. In addition, up-regulation of miR-200a lead to reduction of CDK6 expression and inhibit the proliferation of glioma cells. ZEB1 could be a putative target gene of miR-200a in glioma cells. Thus, miR-200a might suppress cell invasion and migration through down-regulating ZEB1. Moreover, overexpression of miR-200a resulted in down-regulation of ZEB1 and further inhibited malignant phenotype of glioma cells. In summary, our findings suggested that the expression of H19 was elevated in glioma, which could promote the growth, invasion and migration of tumor cells via H19/miR-200a/CDK6/ZEB1 axis. This novel signaling pathway may be a promising candidate for the diagnosis and targeted treatment of glioma.
The morbidity, mortality, and disability associated with intraventricular hemorrhage (IVH) secondary to intracerebral hemorrhage (ICH) represent a global burden. To date, there is no effective therapy for ICH other than supportive care. In this study, we assessed the neuroprotective effects of Cattle encephalon glycoside and ignotin (CEGI) injection in a rat model of ICH with ventricular extension (IVH/ICH). The IVH/ICH rat model was induced via injection of type IV collagenase in the caudate nucleus of Sprague-Dawley rats. The experimental animals were randomized to receive CEGI, monosialotetrahexosyl ganglioside (GM-1), or normal saline. The modified Garcia scale, corner turn test, immunofluorescence staining for myelin basic protein (MBP) and microtubule associated protein 2 (MAP-2), transmission electron microscopy (TEM), and magnetic resonance imaging were employed to evaluate the neuroprotective effect of CEGI in the IVH/ICH rat model. CEGI treatment significantly alleviated the neurobehavioral dysfunction, reduced the lateral ventricular enlargement, promoted hematoma absorption, effectively up-regulated MBP/MAP-2 expression, and ameliorated white matter fiber damage post-ICH induction. Our results demonstrate that CEGI has significant neuroprotective effects in a rat model of IVH/ICH. Therefore, it can be used as a candidate drug for the clinical treatment of IVH/ICH.
Curcumin (CUR) shows a remarkable antitumor activity against a wide range of cancers such as glioma, but its underlying mechanism remains elusive. In this study, we aimed to explore the potential role of H19/miR-675/vitamin D receptor (VDR) in the effect of CUR against glioma. Real-time polymerase chain reaction and westernblot analysis were used to study the effect of CUR or 1,25-dihydroxyvitamin D (1,25(OH) 2 D 3 ) on the expression of H19, miR-675, and VDR. In addition, the effect of H19 on VDR expression was also studied. Furthermore, the expression of H19, miR-675, and VDR between CUR-loaded nanoparticles (NPs) and NP groups was compared, and the interaction among H19, miR-675, and VDR was analyzed by insilicon and luciferase assays. In a dose-dependent manner, CUR and 1,25(OH) 2 D3 both downregulated the expression of H19 and miR-675 but increased the expression of VDR. In addition, H19 evidently reduced the mRNA and protein levels of VDR.Furthermore, VDR was confirmed as a target gene of miR-675, which significantly reduced the expression of VDR. Finally, the administration of CUR evidently decreased tumor volume. CUR-loaded NP group exhibited lower levels of H19 and miR-675, while the NP group showed higher levels of VDR mRNA and protein. In summary, it is the first time that the involvement of a negative feedback loop of H19/miR-675/VDR has been demonstrated in the development of glioma. Therefore, H19 might serve as a new biomarker for the diagnosis and treatment of glioma. K E Y W O R D S apoptosis, glioma, H19, miR-675, VDR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.