Dynamic modulation of ion channels by phosphorylation underlies neuronal plasticity. The Kv2.1 potassium channel is highly phosphorylated in resting mammalian neurons. Activity-dependent Kv2.1 dephosphorylation by calcineurin induces graded hyperpolarizing shifts in voltage-dependent activation, causing suppression of neuronal excitability. Mass spectrometry-SILAC (stable isotope labeling with amino acids in cell culture) identified 16 Kv2.1 phosphorylation sites, of which 7 were dephosphorylated by calcineurin. Mutation of individual calcineurin-regulated sites to alanine produced incremental shifts mimicking dephosphorylation, whereas mutation to aspartate yielded equivalent resistance to calcineurin. Mutations at multiple sites were additive, showing that variable phosphorylation of Kv2.1 at a large number of sites allows graded activity-dependent regulation of channel gating and neuronal firing properties.
Activity-dependent dephosphorylation of neuronal Kv2.1 channels yields hyperpolarizing shifts in their voltage-dependent activation and homoeostatic suppression of neuronal excitability. We recently identified 16 phosphorylation sites that modulate Kv2.1 function. Here, we show that in mammalian neurons, compared with other regulated sites, such as serine (S)563, phosphorylation at S603 is supersensitive to calcineurin-mediated dephosphorylation in response to kainate-induced seizures in vivo, and brief glutamate stimulation of cultured hippocampal neurons. In vitro calcineurin digestion shows that supersensitivity of S603 dephosphorylation is an inherent property of Kv2.1. Conversely, suppression of neuronal activity by anesthetic in vivo causes hyperphosphorylation at S603 but not S563. Distinct regulation of individual phosphorylation sites allows for graded and bidirectional homeostatic regulation of Kv2.1 function. S603 phosphorylation represents a sensitive bidirectional biosensor of neuronal activity.
Leukocyte common antigen-related receptor protein tyrosine phosphatases-comprising LAR, PTPδ, and PTPσ-are synaptic adhesion molecules that organize synapse development. Here, we identify glypican 4 (GPC-4) as a ligand for PTPσ. GPC-4 showed strong (nanomolar) affinity and heparan sulfate (HS)-dependent interaction with the Ig domains of PTPσ. PTPσ bound only to proteolytically cleaved GPC-4 and formed additional complex with leucine-rich repeat transmembrane protein 4 (LRRTM4) in rat brains. Moreover, single knockdown (KD) of PTPσ, but not LAR, in cultured neurons significantly reduced the synaptogenic activity of LRRTM4, a postsynaptic ligand of GPC-4, in heterologous synapse-formation assays. Finally, PTPσ KD dramatically decreased both the frequency and amplitude of excitatory synaptic transmission. This effect was reversed by wild-type PTPσ, but not by a HS-binding-defective PTPσ mutant. Our results collectively suggest that presynaptic PTPσ, together with GPC-4, acts in a HS-dependent manner to maintain excitatory synapse development and function.PTPσ | glypican | LRRTM4 | synaptic cell adhesion | heparan sulfate
Reversible phosphorylation of ion channels underlies cellular plasticity in mammalian neurons. Voltage-gated sodium or Nav channels underlie action potential initiation and propagation, dendritic excitability, and many other aspects of neuronal excitability. Various protein kinases have been suggested to phosphorylate the primary α subunit of Nav channels, affecting diverse aspects of channel function. Previous studies of Nav α subunit phosphorylation have led to the identification of a small set of phosphorylation sites important in meditating aspects of Nav channel function. Here we use nanoflow liquid chromatography tandem mass spectrometry (nano-LC MS/MS) on Nav α subunits affinity-purified from rat brain with two distinct monoclonal antibodies to identify 15 phosphorylation sites on Nav1.2, 12 of which have not been previously reported. We also found 3 novel phosphorylation sites on Nav1.1. In general, commonly used phosphorylation site prediction algorithms did not accurately predict these novel in vivo phosphorylation sites. Our results demonstrate that specific Nav α subunits isolated from rat brain are highly phosphorylated, and suggest extensive modulation of Nav channel activity in mammalian brain. Identification of phosphorylation sites using monoclonal antibody-based immunopurification and mass spectrometry is an effective approach to define the phosphorylation status of Nav channels and important membrane proteins in mammalian brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.