SUMMARY Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer’s disease (AD) pathophysiology. Cellular Prion Protein (PrPC) selectively binds oligomeric Aβ and can mediate AD-related phenotypes. Here, we examined the specificity, distribution and signaling from Aβ/PrP complexes, seeking to explain how they might alter the function of NMDA receptors in neurons. PrPC is enriched in post-synaptic densities, and Aβ/PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from human AD brain interact with PrPC to activate Fyn. Aβ engagement of PrPC/Fyn signaling yields phosphorylation of the NR2B subunit of NMDA-receptors, which is coupled to an initial increase and then loss of surface NMDA-receptors. Aβ-induced LDH release and dendritic spine loss require both PrPC and Fyn, and human familial AD transgene-induced convulsive seizures do not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway requiring PrPC and Fyn to alter synaptic function with relevance to AD.
SUMMARY Soluble Amyloid-β oligomers (Aβo) trigger Alzheimer’s disease (AD) pathophysiology and bind with high affinity to Cellular Prion Protein (PrPC). At the post-synaptic density (PSD), extracellular Aβo bound to lipid-anchored PrPC activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aβo–PrPC with Fyn. Only co-expression of the metabotropic glutamate receptor, mGluR5, allowed PrPC-bound Aβo to activate Fyn. PrPC and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aβo–PrPC generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the later is also driven by human AD brain extracts. In addition, signaling by Aβo–PrPC–mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory and synapse density. Thus, Aβo–PrPC complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.
Although ␣-synuclein is the main structural component of the insoluble filaments that form Lewy bodies in Parkinson disease (PD), its physiological function and exact role in neuronal death remain poorly understood. In the present study, we examined the possible functional relationship between ␣-synuclein and several forms of matrix metalloproteinases (MMPs) in the human dopaminergic neuroblastoma (SK-N-BE) cell line. When SK-N-BE cells were transiently transfected with ␣-synuclein, it was secreted into the extracellular culture media, concomitantly with a significant decrease in cell viability. Also the addition of nitric oxide-generating compounds to the cells caused the secreted ␣-synuclein to be digested, producing a small fragment whose size was similar to that of the fragment generated during the incubation of ␣-synuclein with various MMPs in vitro. Among several forms of MMPs, ␣-synuclein was cleaved most efficiently by MMP-3, and MALDI-TOF mass spectra analysis showed that ␣-synuclein is cleaved from its C-terminal end with at least four cleavage sites within the non-A component of AD amyloid sequence. Compared with the intact form, the protein aggregation of ␣-synuclein was remarkably facilitated in the presence of the proteolytic fragments, and the fragment-induced aggregates showed more toxic effect on cell viability. Moreover, the levels of MMP-3 were also found to be increased significantly in the rat PD brain model produced by the cerebral injection of 6-hydroxydopamine into the substantia nigra. The present study suggests that the extracellularly secreted ␣-synuclein could be processed via the activation of MMP-3 in a selective manner.
GABAergic interneurons are highly heterogeneous, and much is unknown about the specification and functional roles of their neural circuits. Here we show that a transinteraction of Elfn1 and mGluR7 controls targeted interneuron synapse development and that loss of Elfn1 results in hyperactivity and sensory-triggered epileptic seizures in mice. Elfn1 protein increases during postnatal development and localizes to postsynaptic sites of somatostatin-containing interneurons (SOM-INs) in the hippocampal CA1 stratum oriens and dentate gyrus (DG) hilus. Elfn1 knockout (KO) mice have deficits in mGluR7 recruitment to synaptic sites on SOM-INs, and presynaptic plasticity is impaired at these synapses. In patients with epilepsy and attention deficit hyperactivity disorder (ADHD), we find damaging missense mutations of ELFN1 that are clustered in the carboxy-terminal region required for mGluR7 recruitment. These results reveal a novel mechanism for interneuron subtype-specific neural circuit establishment and define a common basis bridging neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.