The endocytosis of AMPA receptors is thought to be important in the expression of long-term depression (LTD) triggered by NMDA receptor activation. Although signaling pathways necessary for LTD induction have been identified, those responsible for the regulated internalization of AMPA receptors are unknown. Here we show that activation of NMDA receptors alone can trigger AMPA receptor endocytosis through calcium influx and activation of the calcium-dependent protein phosphatase calcineurin. A distinct signaling mechanism mediates the AMPA receptor endocytosis stimulated by insulin. These results demonstrate that although multiple signaling pathways can induce AMPA receptor internalization, NMDA receptor activation enhances AMPA receptor endocytosis via a signaling mechanism required for the induction of LTD.
Balanced development of excitatory and inhibitory synapses is required for normal brain function, and their imbalance may underlie pathogenesis of neuropsychiatric disorders. Compared with many identified trans-synaptic adhesion complexes that organize excitatory synapses, little is known about organizers specific for inhibitory synapses. Here we report Slit and NTRK-like family member 3 (Slitrk3) as a postsynaptic adhesion molecule that selectively regulates inhibitory synapse development via trans-interaction with axonal tyrosine phosphatase receptor PTPδ. Slitrk3 expressed in fibroblasts triggers only inhibitory presynaptic differentiation in contacting axons of cocultured rat hippocampal neurons. Recombinant Slitrk3 preferentially localizes to inhibitory postsynaptic sites. Slitrk3-deficient mice exhibit decreases in inhibitory but not excitatory synapse number and function in hippocampal CA1 neurons and exhibit increased seizure susceptibility and spontaneous epileptiform activity. Slitrk3 requires trans-interaction with axonal PTPδ to induce inhibitory presynaptic differentiation. These results identify Slitrk3-PTPδ as an inhibitory-specific trans-synaptic organizing complex required for normal functional GABAergic synapse development.
Long-term potentiation (LTP) is thought to be critically involved not only in learning and memory, but also during the activity-dependent developmental phases of neural circuit formation and refinement. Whether the mechanisms underlying LTP change during this phase of postnatal development, however, is unknown. We report here that, unlike LTP in the more mature CA1 region of the hippocampus, LTP in neonatal rodent hippocampus (<9 postnatal days,
GABAergic interneurons are highly heterogeneous, and much is unknown about the specification and functional roles of their neural circuits. Here we show that a transinteraction of Elfn1 and mGluR7 controls targeted interneuron synapse development and that loss of Elfn1 results in hyperactivity and sensory-triggered epileptic seizures in mice. Elfn1 protein increases during postnatal development and localizes to postsynaptic sites of somatostatin-containing interneurons (SOM-INs) in the hippocampal CA1 stratum oriens and dentate gyrus (DG) hilus. Elfn1 knockout (KO) mice have deficits in mGluR7 recruitment to synaptic sites on SOM-INs, and presynaptic plasticity is impaired at these synapses. In patients with epilepsy and attention deficit hyperactivity disorder (ADHD), we find damaging missense mutations of ELFN1 that are clustered in the carboxy-terminal region required for mGluR7 recruitment. These results reveal a novel mechanism for interneuron subtype-specific neural circuit establishment and define a common basis bridging neurological disorders.
To address questions of whether brain-derived neurotrophic factor (BDNF) released from active excitatory neurons acts locally only on GABAergic presynaptic terminals contacting these neurons or generally also on GABAergic terminals contacting other inactive neurons, we developed a single-cell gene knock-out method in organotypic slice culture of visual cortex of floxed BDNF transgenic mice. A biolistic transfection of Cre recombinase with green fluorescence protein (GFP) plasmids to layer II/III of the cortex resulted in loss of BDNF in a single neuron or a small number of neurons, which expressed GFP at 13-14 d in vitro. Analysis with in situ hybridization and immunohistochemistry confirmed that neurons expressing GFP lacked BDNF mRNA and protein, respectively. Analysis with immunohistochemistry using antibody against GABA synthesizing enzyme showed that the number of GABAergic terminals on the soma of BDNF knock-out neurons was smaller than that of neighboring control neurons. Morphological analysis indicated that there was no significant difference in the soma size and branch points and length of dendrites between the BDNF knock-out and control neurons. Recordings of miniature IPSCs (mIPSCs) showed that the frequency of mIPSCs of BDNF knock-out neurons was lower than that of control neurons, although the amplitude was not significantly different, suggesting the smaller number of functional GABAergic synapses on whole the BDNF knockout neuron. The present results suggest that BDNF released from postsynaptic target neurons promotes the formation or proliferation of GABAergic synapses through its local actions in layer II/III of visual cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.