GABAergic interneurons are highly heterogeneous, and much is unknown about the specification and functional roles of their neural circuits. Here we show that a transinteraction of Elfn1 and mGluR7 controls targeted interneuron synapse development and that loss of Elfn1 results in hyperactivity and sensory-triggered epileptic seizures in mice. Elfn1 protein increases during postnatal development and localizes to postsynaptic sites of somatostatin-containing interneurons (SOM-INs) in the hippocampal CA1 stratum oriens and dentate gyrus (DG) hilus. Elfn1 knockout (KO) mice have deficits in mGluR7 recruitment to synaptic sites on SOM-INs, and presynaptic plasticity is impaired at these synapses. In patients with epilepsy and attention deficit hyperactivity disorder (ADHD), we find damaging missense mutations of ELFN1 that are clustered in the carboxy-terminal region required for mGluR7 recruitment. These results reveal a novel mechanism for interneuron subtype-specific neural circuit establishment and define a common basis bridging neurological disorders.
Lrfn2/SALM1 is a PSD-95-interacting synapse adhesion molecule, and human LRFN2 is associated with learning disabilities. However its role in higher brain function and underlying mechanisms remain unknown. Here, we show that Lrfn2 knockout mice exhibit autism-like behavioural abnormalities, including social withdrawal, decreased vocal communications, increased stereotyped activities and prepulse inhibition deficits, together with enhanced learning and memory. In the hippocampus, the levels of synaptic PSD-95 and GluA1 are decreased. The synapses are structurally and functionally immature with spindle shaped spines, smaller postsynaptic densities, reduced AMPA/NMDA ratio, and enhanced LTP. In vitro experiments reveal that synaptic surface expression of AMPAR depends on the direct interaction between Lrfn2 and PSD-95. Furthermore, we detect functionally defective LRFN2 missense mutations in autism and schizophrenia patients. Together, these findings indicate that Lrfn2/LRFN2 serve as core components of excitatory synapse maturation and maintenance, and their dysfunction causes immature/silent synapses with pathophysiological state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.