Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.
Non-technical summary Cystic fibrosis is a genetic disease caused by the malfunction of a chloride channel called cystic fibrosis transmembrane conductance regulator (CFTR). The most common disease-associated mutation is the deletion of the phenylalanine residue at position 508 ( F508), which result in channels with poor membrane expression and defective function. Opening of CFTR channels is controlled by ATP binding at two intracellular domains, called nucleotide-binding domains (NBDs), and subsequent NBD dimerization. Our previous studies revealed that F508-CFTR channels open very infrequently, raising the possibility that the mutation perturbs NBD dimerization although the mutation is not located near the dimer interface. In this paper, we employed a functional assay to assess the stability of the NBD dimer. Our data suggest that the F508 mutation significantly destabilizes the NBD dimer, supporting the hypothesis that the mutation disrupts the dimer interface. Our results provide structural insights that are potentially useful for drug design.Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP binding cassette (ABC) superfamily. The deletion of the phenylalanine 508 ( F508-CFTR) is the most common mutation among cystic fibrosis (CF) patients. The mutant channels present a severe trafficking defect, and the few channels that reach the plasma membrane are functionally impaired. Interestingly, an ATP analogue, N 6 -(2-phenylethyl)-2 -deoxy-ATP (P-dATP), can increase the open probability (P o ) to ∼0.7, implying that the gating defect of F508 may involve the ligand binding domains, such as interfering with the formation or separation of the dimeric states of the nucleotide-binding domains (NBDs). To test this hypothesis, we employed two approaches developed for gauging the stability of the NBD dimeric states using the patch-clamp technique. We measured the locked-open time induced by pyrophosphate (PP i ), which reflects the stability of the full NBD dimer state, and the ligand exchange time for ATP/N 6 -(2-phenylethyl)-ATP (P-ATP), which measures the stability of the partial NBD dimer state wherein the head of NBD1 and the tail of NBD2 remain associated. We found that both the PP i -induced locked-open time and the ATP/P-ATP ligand exchange time of F508-CFTR channels are dramatically shortened, suggesting that the F508 mutation destabilizes the full and partial NBD dimer states. We also tested if mutations that have been shown to improve trafficking of F508-CFTR, namely the solubilizing mutation F494N/Q637R and RI (deletion of the regulatory insertion), exert any effects on these newly identified functional defects associated with F508-CFTR. Our results indicate that although these mutations increase the membrane expression and function of F508-CFTR, they have limited impact on the stability of both full and partial NBD dimeric states for F508 channels. The structure-function insights gained from this mechanism may provide clues for future drug d...
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR’s gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating—a strict coupling between the ATP hydrolysis cycle and the gating cycle—is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.
Malfunction of cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC protein superfamily that functions as an ATP-gated chloride channel, causes the lethal genetic disease, cystic fibrosis. This review focuses on the most recent findings on the gating mechanism of CFTR. Potential clinical relevance and implications to ABC transporter function are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.